Influence of the Epstein-Barr Virus Persistence upon the Development of the ImmuneMediated Somatic Diseases
https://doi.org/10.21508/1027-4065-2018-63-1-22-27
Abstract
The Epstein–Barr virus, which is persistent in the human organism throughout lifetime after the primary infection, is involved in the pathogenesis of a number of somatic chronic diseases. It is known that the virus successfully escapes the immune control, and has many mechanisms to regulate the components of immune system s as well. In our work, we summarized the current scientific data on the effect of the persistent Epstein-Barr virus on the function and quantity of T- and B-lymphocytes, NK cells, activity of the toll-like receptors, secretion of interleukins, interferons and other cytokines. The immunity dysfunction with the immunoactivation predominance leads to the formation of severe forms of chronic active Epstein–Barr virus infection such as the chronic mononucleosis, hemophagocytic lymphohistiocytosis. The immunosuppression is characteristic for the atypical course of the chronic active Epstein–Barr virus infection. The ability of some viral proteins to antigenic mimicry (that is, the homology of viral and human proteins) is the determining factor in the development of the chronic fatigue syndrome, multiple sclerosis and systemic lupus erythematosus. The Epstein–Barr virus is capable of the immortalization of the B-lymphocytes, including the autoaggressive ones, which leads to the formation of the chronic autoimmune diseases. Study of the development mechanisms of these diseases permits to develop the new, more effective, personalized prevention and treatment schemes, for example, using the targeting therapy.
About the Authors
S. A. YakushinaRussian Federation
L. B. Kisteneva
Russian Federation
References
1. Cohen J.I. Epstein–Barr virus infection. N Engl J Med 2000; 343: 481–492. DOI: 10.1056/NEJM200008173430707
2. Rybalkina T.N., Karazhas N.V., Kalugina M.Yu., Kornienko M.N., Bosh’yan R.E., Mamedova E.А., Polov- tseva T.V. et al. The role of opportunistic infections in the occurrence of complications in children. Detskie infektsii 2013; 12(2): 43–46. (in Russ)
3. Goncharova E.V., Senyuta N.B., Smirnova K.V., Shcherbak L.N., Gurtsevich V.E. Epstain–Barr virus (EBV) in Russia: infection of the population and analysis of the LMP1 gene variants in patients with EBV-associated pathologies and healthy individuals. Vopr virusol 2015; 60(2): 11–17. (in Russ)
4. Cohen J.I. Epstein–barr virus vaccines. Clin Transl Immunol 2015; 4(4): e36. DOI:10.1038/cti.2014.27
5. Barozzi P., Potenza L., Riva G., Vallerini D., Quadrelli C., Bosco R. et al. B cells and herpesviruses: a model of lympho-proliferation. Autoimmun Rev 2007; 7(2): 132–136. DOI: 10.1016/j.autrev.2007.02.018
6. Hutt-Fletcher L.M. Epstein-Barr Virus Entry. J Virol 2007; 81(15): 7825–7832. DOI: 10.1128/JVI.00445-07
7. Maruo S., Yang L., Takada K. Roles of Epstein–Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 2001; 82(Pt 10): 2373–2383. DOI: 10.1099/0022-1317-82-10-2373
8. Reisinger J., Rumpler S., Lion T., Ambros P.F. Visualization of episomal and integrated Epstein–Barr virus DNA by fiber fluorescence in situ hybridization. Int J Cancer 2006; 118(7): 1603–1608. DOI: 10.1002/ijc.21498
9. Babcock G.J., Decker L.L., Volk M., Thorley-Lawson D.A. EBV persistence in memory B cells in vivo. Immunity 1998; 9(3): 395–404.
10. Thorley-Lawson D.A. EBV Persistence–Introducing the Virus. Curr Top Microbiol Immunol 2015; 390(Pt 1): 151–209. DOI: 10.1007/978-3-319-22822-8_8
11. Coleman C.B., Wohlford E.M., Smith N.A., King C.A., Ritchie J.A., Baresel P.C. et al. Epstein–Barr virus type 2 latently infects T cells, inducing an atypical activation characterized by expression of lymphocytic cytokines. J Virol 2015; 89(4): 2301–2312. DOI: 10.1128/JVI.03001-14
12. Chen M.R. Epstein–Barr Virus, the Immune System, and Associated Diseases. Front Microbiol 2011; 2: 5. DOI: 10.3389/ fmicb.2011.00005
13. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 2001; 65: 131–150. DOI: 10.1128/MMBR.65.1.131-150.2001
14. Kanegane H., Wakiguchi H., Kanegane C., Kurashige T., Tosato G. Viral interleukin-10 in chronic active Epstein–Barr virus infection. J Infect Dis 1997; 176(1): 254–257.
15. Dokmeci E., Xu L., Robinson E., Golubets K., Bottomly K., Her-rick C.A. EBI3 deficiency leads to diminished T helper type 1 and increased T helper type 2 mediated airway inflammation. Immunology 2011; 132(4): 559–566. DOI: 10.1111/j.1365-2567.2010.03401
16. Sadeghipour S., Mathias R.A. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol 2017; 67: 91–100. DOI: 10.1016/j.semcdb.2017.03.005
17. Raposo G., Nijman H.W., Stoorvogel W., Leijendekker R., Har- ding C.V., Melief C.J.M. et al. B Lymphocytes Secrete Antigen-presenting Vesicles. J Exp Med 1996; 183(3): 1161–1172.
18. Ariza M.E., Rivailler P., Glaser R., Chen M., Williams M.V. Ep-stein–Barr Virus Encoded dUTPase Containing Exosomes Modulate Innate and Adaptive Immune Responses in Human Dendritic Cells and Peripheral Blood Mononuclear Cells. PLoS One 2013; 8(7): e69827. DOI: 10.1371/journal.pone.0069827
19. Lodish H.F., Zhou B., Liu G., Chen C.Z. Micromanagement of the immune system by microRNAs. Nat Rev Immunol 2008; 8(2): 120–130. DOI: 10.1038/nri2252
20. Pegtel D.M., Cosmopoulos K., Thorley-Lawson D.A., van Eijndhoven M.A.J., Hopmans E.S., Lindenberg J.L. et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 2010; 107(14): 6328–6333. DOI: 10.1073/pnas.0914843107
21. Albanese M., Tagawa T., Buschle A., Hammerschmidt W. Mi-croRNAs of Epstein–Barr virus control innate and adaptive anti-viral immunity. J Virol 2017; pii: JVI.01667-16. DOI: 10.1128/ JVI.01667-16
22. Iwakiri D., Zhou L., Samanta M., Matsumoto M., Ebihara T., Seya T. et al. Epstein–Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling
Review
For citations:
Yakushina S.A., Kisteneva L.B. Influence of the Epstein-Barr Virus Persistence upon the Development of the ImmuneMediated Somatic Diseases. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(1):22-27. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-1-22-27