PECULIARITIES OF HEART RATE VARIABILITY IN NEWBORNS
https://doi.org/10.21508/1027-4065-2018-63-4-52-57
Abstract
Heart rate variability values are potentially important for assessing vegetative dysfunction in children.
The purpose of the research: a comparative study of spectral heart rate variability parameters and synchronization of low-frequency oscillations, characterizing baroreflex in the vegetative regulation of the cardiovascular system in healthy newborns and adults.
15 healthy newborns and 60 healthy individuals in the age of 18-34 years old were included in the study. We performed synchronous recording of electrocardiograms and photoplethysmograms with 10 minutes duration, at rest. Were evaluated spectral heart rate variability indices and the index of synchronization of low-frequency oscillations in heart rate variability and photoplethysmograms (S index).
Results. In newborns, the peak of low-frequency oscillations was predominantly in the range 0.07–0.09 Hz, and high frequency 0.40–0.50 Hz. Newborns had lower LF% values than adults: 22.8 (14.1, 29.4) vs 32.9 (25.1, 41.9) (p=0.009). The S index in newborns was 20.1 (16.9, 26.5)%, and 33.2 (21.2, 45.4)% in healthy adults (p=0.023).
Conclusion. We have first demonstrated that the interaction of baroreflex regulation of heart rhythm and peripheral blood filling in healthy newborns is characterized by lower values of S index, than in healthy adults, which can be explained by the immaturity of the vegetative regulatory elements of the cardiovascular system.
About the Authors
O. S. PaninaRussian Federation
Saratov
A. R. Kiselev
Russian Federation
Saratov
E. I. Borovkova
Russian Federation
Saratov
Yu. V. Chernenkov
Russian Federation
Saratov
V. V. Skazkina
Russian Federation
Saratov
V. I. Gridnev
Russian Federation
Saratov
E. N. Mureeva
Russian Federation
Saratov
A. S. Karavaev
Russian Federation
Saratov
References
1. Allen J., Di Maria C., Mizeva I., Podtaev S. Finger microvascular responses to deep inspiratory gasp assessed and quantified using wavelet analysis. Physiological Measurement 2013; 34 (7): 769–779. DOI: 10.1088/0967-3334/34/7/769
2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93: 1043–1065. DOI: 10.1161/01.CIR.93.5.1043
3. Giddens D.P., Kitney R.I. Neonatal heart rate variability and its relation to respiration. J Theor Biol 1985; 113 (4): 759–780. DOI: 10.1016/S0022-5193(85)80192-2
4. Ponomarenko V.I., Gridnev V.I., Prokhorov M.D., Bespyatov A.B., Bodrov M.B., Karavaev A.S. Synchronization of heart rhythm and vascular tone regulation with breathing. Biomeditsinskaya radioehlektronika (Biomedical Radioelectronics) 2004; 8–9: 40–51. (in Russ)
5. Cevese A., Gulli G., Polati E., Gottin L., Grasso R. Baroreflex and oscillation of heart period at 0.1 Hz studied by alphablockade and cross-spectral analysis in healthy humans. J Physio 2001; 531 (Pt 1): 235–244. DOI: 10.1111%2Fj.1469-7793.2001.0235j.x
6. Prokhorov M.D., Ponomarenko V.I., Gridnev V.I., Bodrov M.B., Bespyatov A.B. Synchronization between main rhythmic processes in the human cardiovascular system. Phys Rev E 2003; 68: 041913. DOI: 10.1103/PhysRevE.68.041913
7. Cooley R.L., Montano N., Cogliati C., Van De Borne P., Richenbacher W., Oren R. et al. Evidence for a central origin of the low-frequency oscillation in RR-interval variability. Circulation 1998; 98: 556–561. DOI: 10.1161/01.CIR.98.6.556
8. Silvani A., Magosso E., Bastianini S., Lenzi P., Ursino M. Mathematical modeling of cardiovascular coupling: central autonomic commands and baroreflex control. Auton Neurosci 2011; 162: 66–71. DOI: 10.1016/j.autneu.2011.04.003
9. Karavaev A.S., Ishbulatov Y.M., Ponomarenko V.I., Prokhorov M.D., Gridnev V.I., Bezruchko B.P. et al. Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure. J Am Soc Hypertens 2016; 10 (3): 235–243. DOI: 10.1016/j.jash.2015.12.014
10. Gordon D., Herrera V.L., McAlpine L., Cohen R.J., Akselrod S., Lang P. et al. Heart rate spectral analysis: a noninvasive probe of cardiovascular regulation in critically ill children with heart disease. Pediatr Cardiol 1988; 9: 69–77. DOI: 10.1007/BF02083703
11. DiPietro J.A., Bornstein M.H., Hahn C.S., Costigan K., AchyBrou A. Fetal heart rate and variability: Stability and prediction to developmental outcomes in early childhood. Child Developm 2007; 78: 1788–1798. DOI: 10.1111/j.1467-8624.2007.01099.x
12. Boyarskaya L.N., Kotlova Yu.V., Kravets L.V., Potapenko S.V. To the problem about estimation of functional ability ofautonomic nervous system in newborns on the basis of heart rate study. Vopr sovrem pediatr 2012; 11 (6): 149–151. (in Russ)
13. Solovyova G.A. Description of the state of the autonomic regu lation on results the analysis of heart rate variability in premature infants with perinatal disorders of the central nervous system. Ros vestn perinatol i pediatr 2012; 57 (2): 10–13. (in Russ)
14. Dimitrijević L., Bjelaković B., Čolović H., Mikov A., Živković V., Kocić M., et al. Assessment of general movements and heart rate variability in prediction of neurodevelopmental outcome in preterm infants. Early Hum Dev 2016; 99: 7–12. DOI: 10.1016/j.earlhumdev.2016.05.014
15. Nikolaeva T.N., Dashichev V.V. Iniтial status and dynamics of cardiac rнythm indices in premature newborns in early posтnatal adaptaтion period. Bulletin of the Ivanovo Medical Academy 2011; 16 (3): 27–31. (in Russ)
16. Karavaev A.S., Prokhorov M.D., Ponomarenko V.I., Kiselev A.R., Gridnev V.I., Ruban E.I. et al. Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 2009; 19: 033112. DOI: 10.1063/1.3187794
17. Kiselev A.R., Karavaev A.S., Gridnev V.I., Prokhorov M.D., Ponomarenko V.I., Borovkova E.I. et al. Method of estimation of synchronization strength between low-frequency oscillations in heart rate variability and photoplethysmographic waveform variability. Russ Open Med J 2016; 5 (1): e0101. DOI: 10.15275/rusomj.2016.0101
18. Kuznetsov A.P., Stankevich N.V. Synchronization of generators of quasiperiodic oscillations. Nelineinaya Dinamika 2013; 9 (3): 409–419. (in Russ)
19. Borovkova E.I., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Comparison of methods for phase synchronization diagnostics from test data modeling nonstationary signals of biological nature. Izvestiya Saratovskogo Universiteta (News of Saratov University). New Series: Series Physics 2015; 15 (3): 36–42. (in Russ)
20. Tumaeva T.S., Balykova L.A. Newborns of high risk groups and electrophysiological cardiac activity during the period of early adaptation. Vopr sovrem pediatr 2014; 13 (1): 141–147. (in Russ)
21. Taranov A.A., Aksenov D.V., Spiridonov I.N., Degtyarev D.N. Newborn heart rate contactless measurements. Neonatologiya: novosti, mneniya, obuchenie (Neonatology: News, Opinions, Training) 2015; 3: 69–73. (in Russ)
22. Patzak A., Lipke K., Orlow W., Mrowka R., Stauss H., Windt E., et al. Development of heart rate power spectra reveals neonatal peculiarities of cardiorespiratory control. Am J Physiol 1996; 271 (4 Pt 2): R1025–R1032. DOI: 10.1152/ajpregu.1996.271.4.R1025
23. Longin E., Gerstner T., Schaible T., Lenz T., König S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med 2006; 34 (4): 303–308. DOI: 10.1515/JPM.2006.058
24. Gerhardt T., Bancalari E. Apnea of prematurity: I. Lung function and regulation of breathing. Pediatrics 1984; 74 (1): 58–62.
25. Finley J.P., Nugent S.T. Heart rate variability in infants, children and young adults. J Auton Nerv Syst 1995; 51 (2): 103– 108. DOI: 10.1016/0165-1838(94)00117-3
26. Mehta S.K., Super D.M., Connuck D., Salvator A., Singer L., Fradley L.G., et al. Heart rate variability in healthy newborn infants. Am J Cardiol 2002; 89 (1): 50–53. DOI: 10.1016/S0002-9149(01)02162-2
27. Longin E., Schaible T., Lenz T., König S. Short term heart rate variability in healthy neonates: normative data and physiological observations. Early Hum Dev 2005; 81 (8): 663–671. DOI: 10.1016/j.earlhumdev.2005.03.015
28. PortaA., GuzzettiS., FurlanR., Gnecchi-RusconeT., MontanoN., Malliani A. Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction. IEEE Trans Biomed Eng 2007; 54: 94–106. DOI: 10.1109/TBME.2006.883789
29. Czippelova B., Chladekova L., Uhrikova Z., Javorka K., Zibolen M., Javorka M. Time irreversibility of heart rate oscillations in newborns – Does it reflect system nonlinearity? Biomed Signal Process Control 2015; 19: 85–88. DOI: 10.1016/j.bspc.2015.03.003
30. Yiallourou S.R., Sands S.A., Walker A.M., Horne R.S. Postnatal development of baroreflex sensitivity in infancy. J Physiol 2010; 588: 2193–2203. DOI: 10.1113/jphysiol.2010.187070
31. Haskova K., Czippelova B., Javorka M., Zibolen M., Javorka K. Baroreflex sensitivity in premature infants – relation to the parameters characterizing intrauterine and postnatal condition. Physiol Res 2017; 66 (Suppl 2): S257–S264.
32. Bennet L., Booth L.C., Drury P.P., Quaedackers J.S., Gunn A.J. Preterm neonatal cardiovascular instability: does understanding the fetus help evaluate the newborn? Proc Austr Physiol Soc 2012; 43: 81–89. DOI: 10.1111/j.1440- 1681.2012.05744.x
Review
For citations:
Panina O.S., Kiselev A.R., Borovkova E.I., Chernenkov Yu.V., Skazkina V.V., Gridnev V.I., Mureeva E.N., Karavaev A.S. PECULIARITIES OF HEART RATE VARIABILITY IN NEWBORNS. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2018;63(4):52-57. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-4-52-57