Остеосаркома – на пути к персонализированной терапии. Часть II: персонализированная терапия будущего


https://doi.org/10.21508/1027-4065-2019-64-3-28-36

Полный текст:


Аннотация

Саркомы костей составляют 7% в структуре злокачественных новообразований у детей, из них 35–50% – остеосаркомы. Значительная часть пациентов выявляется на распространенных стадиях заболеваний, что диктует необходимость поиска новых подходов к лечению. При этом оптимальная терапевтическая стратегия неизвестна, результаты лечения детей остаются неудовлетворительными. В части II описаны достижения в области персонализированной терапии, которые иллюстрируют вектор развития принципов терапии столь сложных заболеваний, которые еще несколько лет назад являлись для большинства пациентов фатальными.


Об авторах

М. Ю. Рыков
ФБГУ «Национальный медицинский исследовательский центр онкологии им. академика Н.Н. Блохина» Минздрава России, НИИ детской онкологии и гематологии; ФГАОУ ВО «Первый московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Россия

Рыков Максим Юрьевич – к.м.н., зам директора

доцент кафедры онкологии лечебного факультета

гл. внештатный детский специалист-онколог Минздрава России по Центральному федеральному округу

SPIN-код: 7652-0122



Э. Р. Сенжапова
ФБГУ «Национальный медицинский исследовательский центр онкологии им. академика Н.Н. Блохина» Минздрава России, НИИ детской онкологии и гематологии
Россия
Сенжапова Эльмира Рифатовна – к.м.н., науч. сотр. отделения опухолей опорно-двигательного аппарата


Список литературы

1. Cui Q., Jiang W., Guo J., Cheng L., Dingfeng L., Xiaohong W. et al. Relationship between hypermetylated MGMT gene and osteosarcoma necrosis rate after chemotherapy. Pathol Oncol Res 2011; 17: 587–591. DOI: 10.1007/s12253-010-9354-7

2. Cui Q., Li D., Liu C., Guo G., Liu S., Liu Y. et al. The significance of MGMT protein detection in evaluation of osteosarcoma necrosis rate after cisplatin chemotherapy. Bosnian J Basic Med Sci 2011; 11(2): 80–83.

3. Hattinger C.M., Michelacci F., Sella F., Magagnoli G., Benini S., Gambarotti M. et al. ERCC1 protein expression predicts survival in patients with high-grade, non-metastatic osteosarcoma treated with neoadjuvant chemotherapy. Histopathol 2015; 67(3): 338–347. DOI: 10.1111/his.12653

4. Nguyen A., Lasthaus C., Guerin E., Marcellin L., Pancreach E., Gaub M. et al. Role of topoisomerases in pediatric high grade osteosarcomas: TOP2A gene is one of the unique molecular biomarkers of chemoresponse. Cancer 2013; 5: 662–675. DOI: 10.3390/cancers5020662

5. Pitano-Garcia A., Zalacain M., Marrodan L., San-Julian M., Sierrasesumaga L. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr 2009; 154(5): 688–693. DOI: 10.1016/j. jpeds.2008

6. Xiao X., Wang W., Zhang H., Gao P., Fan B., Huang C. et al. Individualized chemotherapy for osteosarcoma and identification of gene mutations in osteosarcoma. Tumour Biol 2015; 36(4): 2437–35. DOI: 10.1007/s13277-014-2853-5

7. Gorlick R., Huvos A.G., Heller G., Aledo A., Beardsley G.P., Healey J.H. et al. Expression of HER2/erbB-2 Correlates With Survival in Osteosarcoma. J Clin Oncol 1999; 17: 2781– 2788. DOI: 10.1200/JCO.1999.17.9.2781

8. He A., Qi W., Huang Y., Feng T. CD133 expression predicts lung metastases and poor prognosis in osteosarcoma patients: a clinical and experimental study. Exp Therap Med 2012; 4: 435–441. DOI: 10.3892/etm.2012.603

9. Rossi B., Schinzari G., Maccauro G., Scaramuzzo L., Signorelli D., Rosa M. et al. Neoadjuvant multidrug chemotherapy including high-dose methotrexate modifies VEGF expression in osteosarcoma: an immunihistochemical analysis. BMC Musculoskeletal Dis 2010; .gov/pmc/articles/ PMC2835659/ pdf/1471-2474-11-34.pdf

10. Tu B., Du L., Fan Q.M., Tang Z., Tang T. STAT3 activation by IL6 from mesenchymal stem cell promotes the proliferation and metastasis of osteosarcoma. Cancer letters 2012; 325: 80–88. DOI: 10.1016/j.canlet.2012.06.006

11. Yang R., Qin J., Hoang B.H., Healey J., Gorlick R. Polymorphism and methylation of the reduced folate carrier in osteosarcoma. Clin Orthoped Rel Res 2008; 466: 2046–2051. DOI: 10.1007/s11999-008-0323-3

12. Abarategi A., Tornin J., Martinez-Cruzado L., Hamilton A., Martinez-Campos E., Rodrogo J. et al. Osteosarcoma: cells of origin, cancer stem cells, and target therapies. Stem Cells Inter 2016; https://www.hindawi.com/journals/ sci/2016/3631764

13. Fan H., Liu G., Zhao C., Li X., Yang X. Transcription factor OCT4 promotes osteosarcoma by regulating IncRNAAK055347. Oncol letters 2017; 13: 396–402. DOI: 10.3892/ol.2016.5400

14. Posthuma DeBoer J., van Royen B.J., Helder M.N. Mechanisms of therapy resistance in osteosarcoma: a review. Oncol Discov 2013; .

15. Li J.I., Zhong X.Y., Li Z.Y., Cai J.F., Zou L., Li J.M. et al. CD133 expression in osteosarcoma and derivation of CD133 cells. Mol Med Rep 2013; 7: 577–584. DOI: 10.3892/ mmr.2012.1231

16. Tu B., Zhu J., Liu S., Wang L., Fan Q., Hao Y. et al. Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget 2016; 7(30): 48296–48308. DOI: 10.18632/oncotarget.10219

17. Han G., Wang Y., Bi W. C-MYC overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol Res 2012; 20: 149–156. DOI: 10.3727/096504012 X13522227232237

18. Wu X., Cai Z.D., Lou L.M., Zhu Y.B. Expressions of p53, C-MYC, BCL2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol 2012; 36: 212–216. DOI: 10.1016/j. canep.2011.08.002

19. Ohba T., Cates A.M.M., Cole H.A., Slosky D., Haro H., Ando T. et al. Autocrine VEGF/VEGFR1 signaling in a subpopulation of cell associates with aggressive osteosarcoma. Mol Cancer Res 2014; 12(8): 1100–1111. DOI: 10.1158/1541-7786. MCR-14-0037

20. Han K., Peyret T., Quartino A., Gosselin N. Bevacizumab dosing strategy in pediatric cancer patients based on population pharmacokinetic analysis with external validation. Brit J Clin Pharmacol 2015; 81: 148–160. DOI: 10.1111/bcp.12778

21. Turner D.C., Navid F., Daw N.C., Mao S., Wu J., Santana V. et al. Population pharmacokinetics of bevacizumab in children with osteosarcoma: implications for dosing. Clin Cancer Res 2014; 20 (10): 2783–27924. DOI: 10.1158/1078-0432.

22. Akatsuka T., Wada T., Kokai Y., Kawaguchi S., Isu K., Yamashiru K. et al. ErbB2 Expression Is Correlated with Increased Survival of Patients with Osteosarcoma. Cancer 2002; 94: 1397–404. DOI: 10.1002/cncr.10360

23. Gorlick S., Barkauskas D.A., Krailo M., Piperdi S., Sowers R., Gill J. et al. HER-2 Expression is Not Prognostic in Osteosarcoma; A Children’s Oncology Group Prospective Biology Study. Ped Blood Cancer 2014; 61: 1558–1564. DOI: 10.1002/pbc.25074

24. Ebb D., Holcombe G., Karen M., Bernstein M., Gorlick R., Lipshultz S. et al. Phase II Trial of Trastuzumab in Combination With Cytotoxic Chemotherapy for Treatment of Metastatic Osteosarcoma With Human Epidermal Growth Factor Receptor 2 Overexpression: A Report From the Children’s Oncology Group. J Clin Oncol 2012; 30(20): 2245–2551. DOI: 10.1200/JCO.2011.37.4546

25. Akiyama T., Dass C.R., Choong P.F. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther 2008; 7(11): 3461–69. DOI: 10.1158/1535-7163.MCT08-0530

26. Clezardin P., Benzaid I., Croucher P.I. Bisphosphonates in preclinical bone oncology. Bone 2011; 49: 66–70. DOI: 10.1016/j.bone.2010.11.017

27. Lee J.A., Jung J.S., Kim D.H., Lim J.S., Kim M.S., Kong C.B. et al. RANKL Expression Is Related to Treatment Outcome of Patients With Localized, High-Grade Osteosarcoma. Ped Blood Cancer 2010; 56: 738–743. DOI: 10.1002/pbc.22720

28. Li Z. Potential of human γδ T cells for immunotherapy of osteosarcoma. Mol Biol Rep 2013; 40: 427–437. DOI: 10.1007/ s11033-012-2077-y

29. Goldsby R.E., Fan T.M., Vallaluna D., Wagner L., Isakoff M., Meyer J. et al. Feasibility and dose discovery analysis of zoledronic acid with concurrent hemotherapy in the treatment of newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. Eur J Cancer 2013; 49: 2384–2391. DOI: 10.1016/j.ejca.2013.03.018

30. Piperno-Neumann S., Le Deley M.C., Redini F., Pacquement H., Marec-Berard P., Petit P. et al. Zoledronate in combination with chemotherapy and surgary to treat osteosarcoma (OS2006): a randomized, multicenter, open-label, phase 3 trial. Lancet Oncol 2016; 17(8): 1070–1080. DOI: 10.1016/ S1470-2045(16)30096-1

31. Meyers P. A., Healeya J.H., Chou A.J., Wexler L.H., Merola P.R., Morris C.D. et al. Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer 2011; 117 (8): 1736–1744. DOI: 10.1002/cncr.25744

32. Peng N., Gao S., Guo X. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway. Amer J Transl Res 2016; 8(2): 1005–1015.

33. Takagi S., Ai T., Takami M. Oh-Hara T., Fujita N. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-AKT signaling axis. Cancer Sci 2014; 105(8): 983–988. DOI: 10.1111/cas.12464

34. Shaikh A.B., Li F., Li M., He B., He X., Chen G. et al. Present advances and future perspectives of molecular target therapy for osteosarcoma. Inter J Mol Sci 2016; https://www.ncbi. nlm.nih.gov/pubmed/2705853

35. Kansara M., Teng M.W., Smith M.J., Thomas D.M. Translational biology of osteosarcoma. Nature Rew Cancer 2014; 14: 722–735. DOI:10.1038/nrc3838

36. Pignochino Y., Dell’Aglio C., Basiricò M., Capozzi F., Soster M., Marchio S. et al. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 Upregulation in Osteosarcoma Preclinical Models. Clin Cancer Res 2013; 19 (8): 2117–31. DOI: 10.1158/1078-0432

37. Grignani G., Palmerini E., Dileo P., Asaftei S.D. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 2012; 23 (2): 508–516. DOI: 10.1093/annonc/mdr151

38. Grignani G., Palmerini E., Ferraresi V., Bertulli R., Asaftei S.D., Tamburini A. et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol 2015; 16: 98–107. DOI: 10.1016/S1470- 2045(14)71136-2

39. Fedenko A. Senzhapova E., Aliev M. Everolimus/sorafenib combination in the treatment of pediatric osteosarcomas: single center experience. J Clin Oncol 2016; 34(suppl): e22501.

40. Meyers P.A., Schwartz C.L., Krailo M.D., Healye J.H., Bernstein M.L., Betcher D. et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. Journal of clinical oncology. 2008; 28 (9): 633–638. DOI: 10.1200/ JCO.2008.14.0095

41. Ando K., Mori K., Corradini N., Redini F. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin Pharmacother 2011; 12: 285–292. DOI: 10.1517/14656566.2011.543129

42. Kubo T., Shimose S., Matsuo T., Fujimori J., Arihiro K., Ochi M. et al. Interferon-α/β receptor as a prognostic marker in osteosarcoma. J Bone Joint Surg Am 2011; 93: 519–526. DOI: 10.2106/JBJS.J.00198

43. Bielack S.S., Smeland S., Whelan J.S., Marina N., Jovic G., Hook J.M. et al. Methotrexate, doxorubicin and cisplatin (MAP) plus maintenance pegylated interferon α-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS1 Good response Randomized controlled trial. J Clin Oncol 2015; 33 (20): 2279–2287. DOI: 10.1200/JCO.2014.60.0734


Дополнительные файлы

Для цитирования: Рыков М.Ю., Сенжапова Э.Р. Остеосаркома – на пути к персонализированной терапии. Часть II: персонализированная терапия будущего. Российский вестник перинатологии и педиатрии. 2019;64(3):28-36. https://doi.org/10.21508/1027-4065-2019-64-3-28-36

For citation: Rykov M.Y., Sengapova E.R. Osteosarcoma – on the way to personalized therapy. Part II: personalized therapy of the future. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(3):28-36. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-3-28-36

Просмотров: 22

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)