Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Пребиотические компоненты грудного молока и возможность повторения их эффектов в формулах детского питания

https://doi.org/10.21508/1027-4065-2019-64-3-37-50

Полный текст:

Аннотация

Аксиоматично, что грудное молоко является лучшей пищей для новорожденного, снабжающей его энергией, высококачественными пищевыми нутриентами, а также большим разнообразием биологически активных компонентов, необходимых для адекватного физического и психомоторного развития. Действуя либо в составе сложных биологических структур, либо отдельно, компоненты грудного молока, в том числе персонализированные микробные и иммунные, на молекулярном и клеточном уровне регулируют морфогенез, определяют характер метаболизма, направляют развитие мукозального иммунитета в организме ребенка. Понятно, что однозначно выявить какой-либо компонент грудного молока в качестве основного, определяющего его функциональную активность и обеспечивающего преимущества естественного вскармливания, невозможно. Цель данного обзора – описание роли пребиотиков в грудном молоке и формулах детского питания для формирования и поддержания здоровой микробиоты кишечника ребенка, представляющей ключевое звено формирования нормального пищеварения, функционально состоятельной иммунной системы и обмена веществ.

Об авторах

И. Н. Скидан
Компания «БИБИКОЛЬ РУС»
Россия

Скидан Игорь Николаевич – к.м.н., рук. научного отдела компании 



А. Е. Гуляев
Центр наук о жизни «Назарбаев Университет»; Медицинский институт, Сургутский государственный университет
Казахстан

Гуляев Александр Евгеньевич – д.м.н., проф., вед. науч. сотр. центра наук о жизни

вед. науч. сотр. кафедры патофизиологии и общей патологии 



С. В. Бельмер
ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия
Бельмер Сергей Викторович – д.м.н., проф. кафедры госпитальной педиатрии №2


Список литературы

1. Victora C.G., Bahl R., Barros A.J., França G.V., Horton S., Krasevec J. et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016; 387: 475–490. DOI: 10.1016/S0140-6736(15)01024-7

2. Hauck F.R., Thompson J.M., Tanabe K.O., Moon R.Y., Vennemann M.M. Breastfeeding and reduced risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2011; 128: 103–110. DOI: 10.1542/peds.2010-3000

3. Quigley M.A., Hockley C., Carson C., Kelly Y., Renfrew M.J., Sacker A. Breastfeeding is associated with improved child cognitive development: A population-based cohort study. J Pediatr 2012; 160: 25–32. DOI: 10.1016/j.jpeds.2011.06.035

4. Horta B., Victora C. Long-term effects of breastfeeding: a systematic review. Geneva: World Health Organization, 2013; 74.

5. Gluckman P.D., Hanson M.A., Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 2010; 1(1): 6–18. DOI: 10.1017/ S2040174409990171

6. Bianco-Miotto T., Craig JM., Gasser YP., van Dijk S.J., Ozanne S.E. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis 2017; 8(5): 513–519. DOI: 10.1017/S2040174417000733

7. Woo Baidal J.A., Locks L.M., Cheng, E.R., Blake-Lamb T.L., Perkins M.E., Taveras E.M. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med 2016; 50(6): 761–779. DOI: 10.1016/j.amepre.2015.11.012

8. Goldman A.S. Future research in the immune system of human milk. J Pediatr 2019; 206: 274–279. DOI: 10.1016/j. jpeds.2018.11.024

9. Martin R., Nauta A.J., Ben Amor K., Knippels L.M., Knol J., Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes 2010; 1(4): 367–382. DOI: 10.3920/BM2010.0027

10. Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012; 10(11): 735–742. DOI: 10.1038/nrmicro2876.

11. Bremel R.D. University of Wisconsin and from Handbook of Milk Composition. Academic Press, 1995; 344.

12. Park Y.W., Juarez M., Ramos M., Haenlein G.F.W. Physicochemical characteristics of goat and sheep milk. Small Ruminant Res 2007; 68: 88–113. DOI: org/10.1016/j.smallrumres.2006.09.013

13. Messer M., Mossop G.S. Milk carbohydrates of marsupiais. I. Partial separation and characterisation of neutral milk oligosaccharides of the Eastern grey kangaroo. Aust J Biol Sci 1977; 30: 379–388. DOI: 10.1071/BI9770379

14. Urashima T., Arita M., Yoshida M., Nakamura S., Arai I., Saito T. et al. Chemical characterisation of the oligosaccharides in hooded seal (Cystophora cristata) and Australian fur seal (Arctocephalus pusillus doriferus) milk. Comp Biochem Physiol B Biochem Mol Biol 2001; 128(2): 307–323. DOI: org/10.1016/S1096-4959(00)00327-4

15. Vandenplas Y. Lactose intolerance. Asia Pac J Clin Nutr 2015; 24 (Suppl 1): 9–13. DOI: 10.6133/apjcn.2015.24.s1.02

16. Venema K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 2012; 22(2): 123–140. DOI: org/10.1016/j.idairyj.2011.10.011

17. Ito M., Rimura M. Influence of lactose on faecal microflora in lactose maldigesters. Microb Ecol Health Dis 1993; 6: 73– 76. DOI: org/10.3109/08910609309141564

18. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14: 491–502. DOI: 10.1038/nrgastro.2017.75

19. Макарова Е.Г., Нетребенко О.К., Украинцев С.Е. Олигосахариды грудного молока: история открытия, структура и защитные функции. Педиатрия. Журнал им. Г.Н. Сперанского 2018; 97(4): 152–160. [Makarova E.G., Netrebenko O.K., Ukrainzev S.E. Oligosaccharides of breast milk: history of opening, structure and protective functions. Pediatria 2018; 97(4): 152–160. (in Russ)]

20. Blank D., Dotz V., Geyer R., Kunz C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv Nutr 2012; 3: 440–449. DOI: 10.3945/an.111.001446

21. Prieto P. Profiles of human milk oligosaccharides and production of some human milk oligosaccharides in transgenic animals. Adv Nutr 2012; 3: 456–464. DOI: 10.3945/ an.111.001529

22. Хавкин А.И. Влияние пребиотиков на иммунную систему. Эффективная фармакотерапия. 2014; 42: 34–39. [Khavkin A.I. Impact of prebiotics on immune system. Effektivnaya farmakoterapia 2014; 42: 34–39. (in Russ)]

23. McGuire M.K., Meehan C.L., McGuire M.A., Williams J.E., Foster J., Sellen D.W. et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017; 105: 1086– 1100. DOI: 10.3945/ajcn.116.139980

24. Oliveira D.L., Wilbey R.A., Grandison A.S., Roseiro L.B. Milk oligosaccharides: A review. Inter J Dairy Technol 2015; 68(3): 305–321. DOI: 10.1111/1471-0307.12209

25. Meyrand M., Dallas D.C., Caillat H., Bouvier F., Martin P., Barile D. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein. Small Rumin Res 2013; 113(2–3): 411–420.

26. Montreuil J. The saga of human milk gynolactose. In: B. Renner, G. Sawatzki (eds). New Perspectives in Infant Nutrition. Stuttgart, New York: Georg Thieme Verlag, 1992; 3–11.

27. Polonovski M., Lespagnol A. Sur deux nouveaux sucres du lait de femme, le gynolactose et 1’allolactose. Compte Rendu de l’Academie des Sciences 1931; 192: 1319–1320.

28. Polonowski M., Montreuil J. Etude chromatographique des polyosides du lait de Femme. C R Acad Sci Paris 1954; 238: 2263–2264.

29. Gyorgy P., Norris R.F., Rose C.S. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954; 48(1): 193–201.

30. Goehring K.C., Kennedy A.D., Prieto P.A., Buck R.H. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE 2014; 9: e101692. DOI: 10.1371/journal.pone.0101692

31. Craft K.M., Thomas H.C., Townsend S.D. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in group B streptococcus. ACS Infect Dis. 2018; DOI: 10.1021/acsinfecdis.8b00234

32. Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 establishing the Union list of novel foods in accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods. Off J Eur Union 2017; 351: 72–201.

33. Kajzer J., Oliver J., Marriage B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J 2016; 30: 671.

34. Marriage B.J., Buck R.H., Goehring K.C., Oliver J.S., Williams J.A. Infants fed a lower calorie formula with 2’FL show growth and 2’FL uptake like breast-fed infants. J Pediatr Gastroenterol Nutr 2015; 61: 649–658. DOI: 10.1097/ MPG.0000000000000889

35. Morrow A.L., Ruiz-Palacios G.M., Altaye M., Guerrero M.L., Meinzen-Derr J.K., Farkas T. et al. Human milk oligosaccharides are associated with protection against diarrhea in breastfed infants. J Pediatr 2004; 145: 297–303. DOI: 10.1016/j. jpeds.2004.04.054

36. Stepans M.B., Wilhelm S.L., Hertzog M., Rodehorst T.K., Blaney S., Clemens B., et al. Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed Med 2006; 1: 207–215. DOI: 10.1089/bfm.2006.1.207

37. Guan N., Chen R. Recent Technology Development for the Biosynthesis of Human Milk Oligosaccharide. Recent Pat Biotechnol 2018; 12(2): 92–100. DOI: 10.2174/1872208311 666170531110721

38. Thum C., Roy N.C., McNabb W.C., Otter D.E., Cookson A.L. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Gut Microbes 2015; 6(6): 352–363. DOI: 10.1080/19490976.2015.1105425

39. Daddaoua A., Puerta V., Requena P., Martínez-Férez A., Guadix E., de Medina F.S. et al. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 2006; 136(3): 672–676. DOI: 10.1093/jn/136.3.672

40. Lara-Villoslada F., Debras E., Nieto A., Concha A., Gálvez J., López-Huertas E. et al. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis. Clin Nutr 2006; 25(3): 477– 488. DOI: 10.1016/j.clnu.2005.11.004

41. Kim H.-H., YunS-S., Oh C.-H., Yoon S.S. Galactooligosaccharide and sialyllactose content in commercial lactose powders from goat and cow milk. Korean J Food Sci Anim Resour 2015; 35(4): 572–576. DOI: 10.5851/kosfa.2015.35.4.572

42. Скидан И.Н., Казначеев К.С., Кирилова А.В., Гуляев А.Е. Функциональные пищевые нутриенты в составе детских адаптированных смесей на основе цельного козьего молока. Вопросы практической педиатрии 2015; 4: 38–48. [Skidan I.N., Kaznacheev K.S., Kirillova A.V., Gulyaev A.E. The functional dietary components in infant formulas from goat milk. Voprosy Prakticheskoi Pediatrii 2015; 4: 38–48. (in Russ)]

43. Knol J., Scholtens P., Kafka C., Steenbakkers J., Gro S., Helm K. et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 2005; 40(1): 36–42.

44. Технический Регламент Таможенного союза «О безопасности молока и молочной продукции» (ТР ТС 033/2013). http://24.rospotrebnadzor.ru/links/NormMetodObesp/TehRegTS/.

45. Azagra-Boronat I., Massot-Cladera M., Knipping K., van’t Land B., Stahl B.,Garssen J. et al. Supplementation with 2’- FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Front Cell Infect Microbiol 2018; 8: 372. DOI: 10.3389/fcimb.2018.00372

46. Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3,2): 830–837. DOI: 10.1093/jn/137.3.830S

47. Kelly G. Inulin-type prebiotics – a review: part 1. Altern Med Rev 2008; 13(4): 315–329.

48. Firmansyah A., Chongviriyaphan N., Dillon D.H., Khan N.C., Morita T., Tontisirin K. et al. Fructans in the first 1000 days of life and beyond, and for pregnancy. Asia Pac J Clin Nutr 2016; 25(4): 652–675. DOI: 10.6133/apjcn.092016.02

49. Vos A., M’Rabet L., Stahl B., Boehm G., Garssen J. Immunemodulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit Rev Immunol 2007; 27: 97–140.

50. Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., Hinrichs W.L. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr Polym 2015; 130: 405–419. DOI: 10.1016/j.carbpol.2015.05.026

51. Closa-Monasterolo R., Gispert-Llaurado M., Luque V., Ferre N., Rubio-Torrents C., Zaragoza-Jordana M. et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr 2013; 32(6): 918–927. DOI: 10.1016/j.clnu.2013.02.009

52. Rao S., Srinivasjois R., Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch Pediatr Adolesc Med 2009; 163(8): 755– 764. DOI: 10.1001/archpediatrics.2009.94

53. Kim S. H., Lee D. H., Meyer D. Supplementation of baby formula with native inuline has a prebiotic effect in formula-fed babies. Asia Pac J Clin Nutr 2007; 16: 172–177.

54. Lomax A.R., Calder P.C. Prebiotics, immune function, infection and inflammation: a review of the evidence. Br J Nutr 2009; 101(5): 633–658. DOI: 10.1017/S0007114508055608

55. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569–573. DOI: 10.1126/science.1241165

56. Vogt L., Ramasamy U., Meyer D., Pullens G., Venema K., Faas M.M. et al. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent. PLoS One 2013; 8: e68367. DOI: 10.1371/journal.pone.0068367

57. Казначеев К.С., Казначеева Л.Ф., Скидан И.Н., Чеганова Ю.В. Влияние молочной смеси с пребиотиками на основе новозеландского козьего молока на формирование здорового пищеварения у детей первого года жизни. Лечащий врач 2015; 9: 37–41. [Kaznacheev K.S., Kaznacheyeva L.F. Skidan I.N., Cheganova Y.V. Influence of milk mixture based on goat’s milk with prebiotics on forming healthy digestion in children in their first year. Lechashii Vrach 2015; 9: 37–41. (in Russ)].

58. Богданова С.В., Сенцова Т.Б., Денисова С.Н., Ильенко Л.И., Ревякина В. А., Тарасова О.В., Черняки О.О. Метаболическая активность кишечной микрофлоры и характер сенсибилизации при различных видах вскармливания у здоровых детей. Рос вестн перинатол и педиатр 2015; 5: 135–142. [Bogdanova S.V., Sentsova T.B., Denisova S.N., Il’enko L.I., Revyakina V. А., Tarasova O.V., Chernyaki O.O. The metabolic activity of the enteric microflora and the pattern of sensitization in different types of feeding in healthy infants. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics) 2015; 60(5): 135– 142. (in Russ)].

59. Белоусова О.Ю., Ганзий Е.Б. Опыт применения смеси «НЭННИ 1 с пребиотиками» у детей первого полугодия жизни с функциональными запорами. Здоровье ребенка 2018; 13(2.1): 7–15. [Belousova O.Yu., Ganziy E.B. Experience in the use of a mixture of «NANNI 1 with prebiotics in children of the first half of the year of life with functional constipation. Zdorov’e rebenka 2018; 13(2.1): 7–15. (in Russ)].

60. Feruś K., Drabińska N., Krupa-Kozak U., Jarocka-Cyrta E. Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients 2018; 10(11): E1818. DOI: 10.3390/nu10111818

61. Drabińska N., Jarocka-Cyrta E., Markiewicz L.H., Krupa-Kozak U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients 2018; 10(2): E201. DOI: 10.3390/nu10020201

62. Drabińska N., Krupa-Kozak U., Ciska E., Jarocka-Cyrta E. Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebocontrolled pilot study. Amino Acids 2018; 50(10): 1451–1460. DOI: 10.1007/s00726-018-2622-7

63. Drabińska N., Krupa-Kozak U., Abramowicz P., Jarocka-Cyrta E. Effect of oligofructose-enriched inulin on vitamin D and E Status in children with celiac disease on a long-term gluten-free diet: A preliminary randomized, placebo-controlled nutritional intervention study. Nutrients 2018; 10(11): E1768. DOI: 10.3390/nu10111768

64. Ho J., Reimer R.A., Doulla M., Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: study protocol for a randomized controlled trial. Trials 2016; 17(1): 347. DOI: 10.1186/s13063-016-1486-y

65. Aliasgharzadeh A., Khalili M., Mirtaheri E., Pourghassem Gargari B., Tavakoli F., Abbasalizad Farhangi M. et al. Combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: a randomized controlled clinical trial. Adv Pharm Bull 2015; 5(4): 507–514. DOI: 10.15171/apb.2015.069

66. Dehghan P., Pourghassem Gargari B., Asghari Jafar-abadi M. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 2014; 30(4): 418–423. DOI: 10.1016/j.nut.2013.09.005

67. Nicolucci A.C., Hume M.P., Martínez I., Mayengbam S., Walter J., Reimer R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterol 2017; 153(3): 711–722. DOI: 10.1053/j. gastro.2017.05.055

68. Hume M.P., Nicolucci A.C., Reimer R.A. Prebiotic supplementation improves appetite control in children with overweight and obesity: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 790–799. DOI: 10.3945/ajcn.116.140947

69. Valcheva R., Koleva P., Martínez I., Walter J., Gänzle M.G., Dieleman L.A. Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes 2018; 5: 1–24. DOI: 10.1080/19490976.2018.1526583

70. Holloway L., Moynihan S., Abrams S.A., Kent K., Hsu A.R., Friedlander A.L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 2007; 97: 365–372. DOI: 10.1017/S000711450733674X

71. Smith A.P., Sutherland D., Hewlett P. An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients 2015; 7(11): 8887–8896. DOI: 10.3390/nu7115441


Для цитирования:


Скидан И.Н., Гуляев А.Е., Бельмер С.В. Пребиотические компоненты грудного молока и возможность повторения их эффектов в формулах детского питания. Российский вестник перинатологии и педиатрии. 2019;64(3):37-49. https://doi.org/10.21508/1027-4065-2019-64-3-37-50

For citation:


Skidan I.N., Gulyaev A.E., Belmer S.V. Prebiotic components of breast milk and the possibility of repeating their effects in infant formulas. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(3):37-49. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-3-37-50

Просмотров: 65


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)