Preview

Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics)

Advanced search

Biomarkers of early cardiovascular aging

https://doi.org/10.21508/1027-4065-2019-64-4-11-18

Abstract

Genetic aspects regulate the intensity and rate of aging (no toxic effects considered), their negative role depends on the pathogenicity of the mutation. The light variant of the genetic “defect” has no clinical signs which feature a certain known genetic syndrome, but it has the biochemical, immunological, vascular and other abnormalities leading to pathological aging. In the most severe case, e.g. progeria, pathological aging is the main phenotypic symptom that manifests already in childhood. The subject of the pathological aging research covers the whole range of intermediate states. The review focuses on aging in individuals without validated signs of disease: coronary heart disease, hypertension, diabetes or fasting hyperglycemia, hyperlipidemia, and others. The authors present the main searching directions of aging biomarkers (size and speed of telomere shortening, breaks in their terminal loops; expression of inflammatory proteins, synaptic interactions proteins and neurotrophic processes; mitochondrial biogenesis; endothelial dysfunction; DNA methylation activity).

About the Authors

O. S. Groznova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


I. M. Miklashevich
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


V. Yu. Voinova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


M. A. Shkolnikova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


O. N. Tkacheva
Russian Clinical and Research Center of Gerontology of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


E. N. Dudinskaya
Russian Clinical and Research Center of Gerontology of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


I. A. Kovalev
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation
Moscow


References

1. Wang C., Oshima M., Sashida G., Tomioka T., Hasegawa N., Mochizuki-Kashio M. et al. Non-Lethal Ionizing Radiation Promotes Aging-Like Phenotypic Changes of Human Hematopoietic Stem and Progenitor Cells in Humanized Mice. PLoS One 2015; 10(7): e0132041. DOI: 10.1371/journal.pone.0132041

2. Kruglikova A.S., Strajesko I.D., Tkacheva O.N., Akasheva D.U., Plokhova E.V., Pykhtina V.S. et al. Interrelation between cardiovascular risk factors and telomere biology with the signs of vascular aging. Kardiovaskulyarnaya terapiya i profilaktika (Cardiovascular Therapy and Prevention) 2014; 13(3): 11–17. (in Russ.).

3. Vasylenko N.Yu. Social gerontology. Vladivostok: Publishing house of the Far East University 2003; 140. (in Russ.).

4. Gichev Yu.P. Environmental conditionality of premature growth and shortening of the life expectancy of the population of Russia. Gigiyena i sanitariya (Hygiene and sanitation) 2002; 6: 48–51. (in Russ.).

5. Todorov I.N., Todorov G.I. Stress, aging and their biochemical correction. Moscow: Nauka, 2003; 479. (in Russ.).

6. Kobalava Zh.D., Kotovskaya Yu.V., Semagina I.M. Markers of cardiovascular aging: effects of multicomponent therapy. Klinicheskaya farmakologiya i terapiya (Clinical Pharmacology and Therapy) 2016; 25(3): 46–52. (in Russ.).

7. Pristrom M.S., Pristrom S.L., Semenenkov I.I. Physiological and early aging. Modern view of the problem. Meditsinskie novosti 2015; 2(245): 36–45. (in Russ.).

8. Hammad E.V., Medzinovskiy Yu.F., Plotnikova A.A. Modern view on molecular biomarkers of aging identified in the blood. Sovremennye problemy nauki i obrazovaniya 2017; 5: 97. (in Russ.).

9. Moskalev A.A. Molecular biomarkers of aging for preventive medicine. Vestnik vosstanovitel’noj mediciny (Journal of Restorative Medicine & Rehabilitation) 2017; 1(77): 18–29. (in Russ.).

10. Frenzel M., Ricoul M., Benadjaoud M.A., Bellamy M., Lenain A., Haddy N. et al. Retrospective cohort study and biobanking of patients treated for hemangioma in childhood – telomeres as biomarker of aging and radiation exposure. Int J Radiat Biol 2017; 93(10): 1040–1053. DOI: 10.1080/09553002.2017.1337278

11. Skilton M.R., Nakhla S., Ayer J.G., Harmer J.A., Toelle B.G., Leeder S.R. et al. Telomere length in early childhood: Early life risk factors and association with carotid intima–media thickness in later childhood. Eur J Prev Cardiol 2016; 23(10): 1086–92. DOI: 10.1177/2047487315607075

12. Gruszecka A., Kopczyński P., Cudziło D., Lipińska N., Romaniuk A., Barczak W. et al. Telomere shortening in Down syndrome patients--when does it start? DNA Cell Biol 2015; 34(6): 412–417. DOI: 10.1089/dna.2014

13. Morgan R.G., Donato A.J., Walker A.E. Telomere uncapping and vascular aging. Am J Physiol Heart Circ Physiol 2018; 315(1): H1–H5. DOI: 10.1152/ajpheart.00008.2018

14. Rotar O., Moguchaia E., Boyarinova M., Kolesova E., Khromova N., Freylikhman O. et al. Seventy years after the siege of Leningrad: does early life famine still affect cardiovascular risk and aging? J Hypertens 2015; 33(9): 1772–1779; discussion 1779. DOI: 10.1097/HJH.0000000000000640

15. Tyrka A.R., Parade S.H., Price L.H., Kao H.T., Porton B., Philip N.S. et al. Alterations of Mitochondrial DNA Copy Number and Telomere Length With Early Adversity and Psychopathology. Biol Psychiatry 2016; 79(2): 78–86. DOI: 10.1016/j.biopsych.2014.12.025

16. Carrillo J., Calvete O., Pintado-Berninches L., Manguan-García C., Sevilla Navarro J., Arias-Salgado E.G. et al. Mutations in XLF/NHEJ1/Cernunnos gene results in downregulation of telomerase genes expression and telomere shortening. Hum Mol Genet 2017; 26(10): 1900–1914. DOI: 10.1093/hmg/ddx098

17. Oja S., Komulainen P., Penttilä A., Nystedt J., Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 2018; 9(1): 6. DOI: 10.1186/s13287-017-0740-x

18. Casciaro M., Di Salvo E., Pace E., Ventura-Spagnolo E., Navarra M., Gangemi S. Chlorinative stress in age-related diseases: a literature review. Immun Ageing 2017; 14: 21. DOI: 10.1186/s12979-017-0104-5

19. Calabrese V., Dattilo S., Petralia A., Parenti R., Pennisi M., Koverech G. et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: redox status and proteomics. Free Radic Res 2015; 49(5): 511–524. DOI: 10.3109/10715762.2015.1020799

20. Primiani C.T., Ryan V.H., Rao J.S., Cam M.C., Ahn K., Modi H.R., Rapoport S.I. Coordinated gene expression of neuroinflammatory and cell signaling markers in dorsolateral prefrontal cortex during human brain development and aging. PLoS One 2014; 9(10): e110972. DOI: 10.1371/journal.pone.0110972

21. Zheng Y., Rao Y.Q., Li J.K., Huang Y., Zhao P., Li J. Agerelated pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol 2018; 11(2): 196–200. DOI: 10.18240/ijo.2018.02.03

22. Minciullo P.L., Catalano A., Mandraffino G., Casciaro M., Crucitti A., Maltese G. et al. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch Immunol Ther Exp (Warsz) 2016; 64(2): 111–126. DOI: 10.1007/s00005-015-0377-3

23. Marosi K., Bori Z., Hart N., Sárga L., Koltai E., Radák Z., Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience 2012; 226: 21–28. DOI: 10.1016/j.neuroscience.2012.09.001

24. Villa F., Carrizzo A., Spinelli C.C., Ferrario A., Malovini A., Maci g A. et al. Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis. Circ Res 2015; 117(4): 333–345. DOI: 10.1161/CIRCRESAHA.117.305875

25. Balbi M., Ghosh M., Longden T.A., Jativa Vega M., Gesierich B., Hellal F. et al. Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab 2015; 35(9): 1445–1453. DOI: 10.1038/jcbfm.2015.107

26. Ross M.D., Malone E.M., Simpson R., Cranston I., Ingram L., Wright G.P. et al. Lower resting and exercise-induced circulating angiogenic progenitors and angiogenic T cells in older men. Am J Physiol Heart Circ Physiol 2018; 314(3): H392– H402. DOI: 10.1152/ajpheart.00592.2017

27. Sohn E.H., Flamme-Wiese M.J., Whitmore S.S., Wang K., Tucker B.A., Mullins R.F. Loss of CD34 expression in aging human choriocapillaris endothelial cells. PLoS One 2014; 9(1): e86538. DOI: 10.1371/journal.pone.0086538

28. Picca A., Lezza A.M.S., Leeuwenburgh C., Pesce V., Calvani R., Bossola M. et al. Circulating Mitochondrial DNA at the Crossroads of Mitochondrial Dysfunction and Inflammation During Aging and Muscle Wasting Disorders. Rejuvenation Res 2018; 21(4): 351–359. DOI: 10.1089/rej.2017.1989

29. Gonzales-Ebsen A.C., Gregersen N., Olsen R.K. Linking telomere loss and mitochondrial dysfunction in chronic disease. Front Biosci (Landmark Ed) 2017; 22: 117–127.

30. Khalifa A.R., Abdel-Rahman E.A., Mahmoud A.M., Ali M.H., Noureldin M., Saber S.H. et al. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep 2017; 5(6): pii: e13125. DOI: 10.14814/phy2.13125

31. Joseph A.M., Nguyen L.M., Welter A.E., Dominguez J.M. 2nd, Behnke B.J., Adhihetty P.J. Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 2014; 15(5): 517–534. DOI: 10.1007/s10522-014-9526-z

32. Valero T., Moschopoulou G., Mayor-Lopez L., Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int 2012; 61(8): 1333–1343. DOI: 10.1016/j.neuint.2012.09.010

33. Horvath S., Zhang Y., Langfelder P., Kahn R.S,. Boks M.P., van Eijk K. et al. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 2012; 13(10): R97. DOI: 10.1186/gb-2012-13-10-r97

34. Voskoboeva E., Semyachkina A., Yablonskaya M., Nikolaeva E. Homocystinuria due to cystathionine beta-synthase (CBS) deficiency in Russia: Molecular and clinical characterization. Molecular Genetics and Metabolism Reports 2018; 14: 47–54.

35. Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 2018; 23: 1–12. DOI: 10.1080/19491034.2018.1476793


Review

For citations:


Groznova O.S., Miklashevich I.M., Voinova V.Yu., Shkolnikova M.A., Tkacheva O.N., Dudinskaya E.N., Kovalev I.A. Biomarkers of early cardiovascular aging. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(4):11-18. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-4-11-18

Views: 1152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)