Наследственная тирозинемия 1-го типа у детей
https://doi.org/10.21508/1027-4065-2019-64-5-69-83
Аннотация
К наследственным нарушениям обмена веществ относится группа заболеваний (более 400), при которых дефект того или иного гена изменяет метаболический процесс, что приводит либо к накоплению нежелательных метаболитов, либо к дефициту какого-либо вещества. К этой группе заболеваний относится и наследственная тирозинемия 1-го типа – тяжелое нарушение обмена тирозина, вызванное дефицитом фермента фумарилацетоацетатгидролазы (fumarylacetoacetate hydrolase – FAH), – последнего фермента катаболического пути тирозина. Тирозинемия 1-го типа является аутосомно-рецессивным заболеванием. В работе представлен обзор литературы, содержащей современные сведения о диагностике и подходах к терапии тирозинемии с использованием нитизинона и низкобелковой диеты, а также собственный анализ клинических проявлений и особенностей лабораторной диагностики наследственной тирозинемии 1-го типа у 17 детей.
Об авторах
Г. В. ВолынецРоссия
д.м.н., гл. науч. сотр. отдела гастроэнтерологии,
125412, г. Москва, ул. Талдомская, д. 2
А. В. Никитин
Россия
к.м.н., асс. кафедры гастроэнтерологии факультета дополнительного профессионального образования,
117997, г. Москва, ул. Островитянова, д. 1
Т. А. Скворцова
Россия
к.м.н., доц. кафедры гастроэнтерологии; зав. отделением гастроэнтерологии,
117997, г. Москва, ул. Островитянова, д. 1
119049 Москва, 4-й Добрынинский переулок д. 1/9, кор. 17
Список литературы
1. Applegarth D.A., Toone J.R., Lowry R.B. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics 2000; 105(1): e10. DOI: 10.1542/peds.105.1.e10
2. Mitchell G.A., Grompe M., Lambert H., Tanguay R.M. Hypertyrosinemia. In: Scriver C., Beaudet A., Sly W.S.J., Valle D. (editors) The metabolic and molecular bases of inherited diseases. Vol II, 8th edn. McGrawHill, New York, 2001; 1777–1805.
3. Sniderman King L., Trahms C., Scott C.R. Tyrosinemia Type I. https://www.ncbi.nlm.nih.gov/books/NBK1515/
4. Natt E., Kida K., Odievre M., Di Rocco M., Scherer G. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II. Proc Natl Acad Sci U S A 1992; 89(19): 9297–9301. DOI: 10.1073/pnas.89.19.9297
5. Tomoeda K., Awata H., Matsuura T., Matsuda I., Ploechl E., Milovac T. et al. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab 2000; 71(3): 506–510. DOI: 10.1006/mgme.2000.3085
6. Wilcken B., Hammond J.W., Howard N., Bohane T., Hocart C., Halpern B. Hawkinsinuria: a dominantly inherited defect of tyrosine metabolism with severe effects in infancy. N Engl J Med 1981; 305(15): 865–868. DOI: 10.1056/NEJM198110083051505
7. Cruz-Camino H., Vazquez-Cantu D.L., Zea-Rey A.V., López-Valdez J., Jiménez-Lozano J., Gómez-Gutiérrez R., Cantú-Reyna C. Hawkinsinuria clinical practice guidelines: a Mexican case report and literature review. J Int Med Res 2019; 300060519863543. DOI: 10.1177/0300060519863543
8. Russo P.A., Mitchell G.A., Tanguay R.M. Tyrosinemia: a review. Pediatr Dev Pathol 2001; 4(3): 212–221.
9. Garrod A.E. About Alkaptonuria. Med Chir Trans 1902; 85: 69–78.
10. Vilboux T., Kayser M., Introne W., Suwannarat P., Bernardini I., Fischer R. et al. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 2009; 30(12): 1611–1619. DOI: 10.1002/humu.21120
11. Yang H., Al-Hertani W., Cyr D., Laframboise R., Parizeault G., Wang SP. et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J Med Genet 2017; 54(4): 241–247. DOI: 10.1136/jmedgenet-2016-104289
12. Angileri F., Bergeron A., Morrow G., Lettre F., Gray G., Hutchin T. et al. Geographical and Ethnic Distribution of Mutations of the Fumarylacetoacetate Hydrolase Gene in Hereditary Tyrosinemia Type 1. JIMD Rep 2015; 19: 43–58. DOI: 10.1007/8904_2014_363
13. De Braekeleer M., Larochelle J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St- Jean. Am J Hum Genet 1990; 47(2): 302–307.
14. Grompe M., St-Louis M., Demers S.I., al-Dhalimy M., Leclerc B., Tanguay R.M. A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I. N Engl J Med 1994; 331(6): 353–357. DOI: 10.1056/NEJM199408113310603
15. Poudrier J., St-Louis M., Lettre F., Gibson K., Prévost C., Larochelle J., Tanguay R.M. Frequency of the IVS12 + 5G-->A splice mutation of the fumarylacetoacetate hydrolase gene in carriers of hereditary tyrosinaemia in the French Canadian population of Saguenay-Lac-St-Jean. Prenat Diagn 1996; 16(1): 59–64. DOI: 10.1002/(SICI)1097-0223(199601)16:1<59::AID-PD810>3.0.CO;2-D
16. Kvittingen E.A., Jellum E., Stokke O. Assay of fumarylacetoacetate fumarylhydrolase in human liver-deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta 1981; 115(3): 311–319. DOI: 10.1016/0009-8981(81)90244-8
17. St-Louis M., Tanguay R.M. Mutations in the fumarylacetoacetate hydrolase gene causing hereditary tyrosinemia type I: overview. Hum Mutat. 1997;9(4):291–299. DOI: 10.1002/(SICI)1098-1004(1997)9:4<291::AID-HUMU1>3.0.CO;2-9
18. Bateman R.L., Ashworth J., Witte J.F., Baker L.J., Bhanumoorthy P., Timm D.E. et al. Slow-onset inhibition of fumarylacetoacetate hydrolase by phosphinate mimics of the tetrahedral intermediate: kinetics, crystal structure and pharmacokinetics. Biochem J 2007;402(2):251–260. DOI: 10.1042/BJ20060961
19. St-Louis M., Leclerc B., Laine J., Salo M.K., Holmberg C., Tanguay R.M. Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I. Hum Mol Genet 1994; 3(1): 69–72. DOI: 10.1093/hmg/3.1.69
20. Hutchesson A.C., Bundey S., Preece M.A., Hall S.K., Green A. A comparison of disease and gene frequencies of inborn errors of metabolism among different ethnic groups in the West Midlands, UK. J Med Genet 1998; 35(5): 366–370. DOI: 10.1136/jmg.35.5.366
21. Phaneuf D., Labelle Y., Bérubé D., Arden K., Cavenee W., Gagné R., Tanguay R.M. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet 1991; 48(3): 525–535.
22. Bateman R.L., Bhanumoorthy P., Witte J.F., McClard R.W., Grompe M., Timm D.E. Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor. J Biol Chem 2001; 276(18): 15284–15291. DOI: 10.1074/jbc.M007621200
23. Tanguay R.M., Valet J.P., Lescault A., Duband J.L., Laberge C., Lettre F., Plante M. Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia ( type I). Am J Hum Genet 1990; 47(2): 308–316.
24. Tanguay R.M., Jorquera R., Poudrier J., St-Louis M. Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 1996; 43(1): 209–216.
25. Jorquera R., Tanguay R.M. Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum Mol Genet 2001; 10(17): 1741–1752. DOI: 10.1093/hmg/10.17.1741
26. Mendoza M.C., Er E.E., Blenis J. The Ras-ERK and PI3KmTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011; 36(6): 320–328. DOI: 10.1016/j.tibs.2011.03.006
27. Langlois C., Jorquera R., Orejuela D., Bergeron A., Finegold M.J., Rhead W.J., Tanguay R.M. Rescue from neonatal death in the murine model of hereditary tyrosinemia by glutathione monoethylester and vitamin C treatment. Mol Genet Metab 2008; 93(3): 306–313. DOI: 10.1016/j.ymgme.2007.09.018
28. Bergeron A., Jorquera R., Orejuela D., Tanguay R.M. Involvement of endoplasmic reticulum stress in hereditary tyrosin emia type I. J Biol Chem 2006; 281(9): 5329–5334. DOI: 10.1074/jbc.M506804200
29. Bliksrud Y.T., Ellingsen A., Bjørås M. Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 2013; 36(5): 773–778. DOI: 10.1007/s10545-012-9556-0
30. van Dyk E., Steenkamp A., Koekemoer G., Pretorius P.J. Hereditary tyrosinemia type 1 metabolites impair DNA excision repair pathways. Biochem Biophys Res Commun 2010; 401(1): 32–36. DOI: 10.1016/j.bbrc.2010.09.002
31. Langie S.A., Knaapen A.M., Houben J.M., van Kempen F.C., de Hoon J.P., Gottschalk R.W. et al. The role of glutathione in the regulation of nucleotide excision repair during oxidative stress. Toxicol Lett 2007; 168(3): 302–309. DOI: 10.1016/j.toxlet.2006.10.027
32. Storr S.J., Woolston C.M., Martin S.G. Base excision repair, the redox environment and therapeutic implications. Curr Mol Pharmacol 2012; 5(1): 88–101.
33. Lee O., O’Brien P.J. Modifications of mitochondrial function by toxicants. In: McQueen C.A. Comprehensive toxicology. Elsevier, Oxford, 2010; 411–445.
34. Richardson D.R., Mouralian C., Ponka P., Becker E. Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 2001; 1536(2–3): 133–140. DOI: 10.1016/s0925-4439(01)00041-2
35. Roth K.S., Carter B.E., Higgins E.S. Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 1991; 196(4): 428–431. DOI: 10.3181/00379727-196-43211
36. Wyss P.A., Boynton S.B., Chu J., Spencer R.F., Roth K.S. Physiological basis for an animal model of the renal Fanconi syndrome: use of succinylacetone in the rat. Clin Sci (Lond) 1992; 83(1): 81–87. DOI: 10.1042/cs0830081
37. Schady D.A., Roy A., Finegold M.J. Liver tumors in children with metabolic disorders. Transl Pediatr 2015; 4(4): 290–303. DOI: 10.3978/j.issn.2224-4336.2015.10.08
38. van Spronsen F.J., Thomasse Y., Smit G.P., Leonard J.V., Clayton P.T., Fidler V. et al. Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 1994; 20(5): 1187–1191.
39. Fernández-Lainez C., Ibarra-González I., Belmont-Martínez L., Monroy-Santoyo S., Guillén-López S., Vela-Amieva M. Tyrosinemia type I: clinical and biochemical analysis of patients in Mexico. Ann Hepatol 2014; 13(2): 265–272.
40. Russo P., O’Regan S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet 1990; 47(2): 317–324.
41. Weinberg A.G., Mize C.E., Worthen H.G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 1976; 88(3): 434–438. DOI: 10.1016/s0022-3476(76)80259-4
42. van Spronsen F.J., Berger R., Smit G.P., de Klerk J.B., Duran M., Bijleveld C.M. et al. Tyrosinaemia type I: orthotopic liver transplantation as the only definitive answer to a metabolic as well as an oncological problem. J Inherit Metab Dis 1989; 12(Suppl 2): 339–342. DOI: 10.1007/bf03335416
43. Grenier A., Bélanger L., Laberge C. Alpha1-Fetoprotein measurement in blood spotted on paper: discriminating test for hereditary tyrosinemia in neonatal mass screening. Clin Chem 1976; 22(7): 1001–1004.
44. Grenier A., Lescault A., Laberge C., Gagné R., Mamer O. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta 1982; 123(1–2): 93–99. DOI: 10.1016/0009-8981(82)90117-6
45. Allard P., Grenier A., Korson M.S., Zytkovicz T.H. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem 2004; 37(11): 1010–1015. DOI: 10.1016/j.clinbiochem.2004.07.006
46. Grenier A., Cederbaum S., Laberge C., Gagné R., Jakobs C., Tanguay R.M. A case of tyrosinaemia type I with normal level of succinylacetone in the amniotic fluid. Prenat Diagn 1996; 16(3): 239–242. DOI: 10.1002/(SICI)1097-0223(199603)16:3<239::AID-PD829>3.0.CO;2-W
47. Demers S.I., Russo P., Lettre F., Tanguay R.M. Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 2003; 34(12): 1313–1320. DOI: 10.1016/s0046-8177(03)00406-4
48. Grompe M., al-Dhalimy M. Rapid nonradioactive assay for the detection of the common French Canadian tyrosinemia type I mutation. Hum Mutat 1995; 5(1): 105. DOI: 10.1002/humu.1380050117
49. Bartlett D.C., Preece M.A., Holme E., Lloyd C., Newsome P.N., McKiernan P.J. Plasma succinylacetone is persistently raised after liver transplantation in tyrosinaemia type 1. J Inherit Metab Dis 2013; 36(1): 15–20. DOI: 10.1007/s10545-012-9482-1
50. Pierik L.J., van Spronsen F.J., Bijleveld C.M., van Dael C.M. Renal function in tyrosinaemia type I after liver transplantation: a long-term follow-up. J Inherit Metab Dis 2005; 28(6): 871–876. DOI: 10.1007/s10545-005-0059-0
51. Lindstedt S., Holme E., Lock E.A., Hjalmarson O., Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 1992; 340(8823): 813–817. DOI: 10.1016/0140-6736(92)92685-9
52. van Spronsen F.J., van Rijn M., Meyer U., Das A.M. Dietary Considerations in Tyrosinemia Type I. Adv Exp Med Biol 2017; 959: 197–204. DOI: 10.1007/978-3-319-55780-9_18
53. Волынец Г.В., Геворкян А.К., Бушуева Т.В., Никитин А.В., Скворцова Т.А., Хавкин А.И. и др. Алгоритм пошаговой диагностики и динамика изменений структуры и функции печени на фоне специфической терапии тирозинемии I типа у детей. Экспериментальная и клиническая гастроэнтерология 2017; 1(137): 58–64. [Volynets G.V., Gevorgyan A.K., Bushueva T.V., Nikitin A.V., Skvortsova T.A., Khavkin A.I. et al. An algorithm for step-by-step diagnostics and dynamics of changes in the structure and function of the liver against the background of specific therapy of type I tyrosinemia in children. Eksperimental’naya i klinicheskaia gastroenterologiya ( Experimental and clinical gastroenterology) 2017; 1 (137): 58–64.]
54. Bartlett D.C., Lloyd C., McKiernan P.J., Newsome P.N. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 2014; 37(5): 745– 752. DOI: 10.1007/s10545-014-9683-x
55. Larochelle J., Alvarez F., Bussières J.F., Chevalier I., Dallaire L., Dubois J. et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab 2012; 107(1–2): 49–54. DOI: 10.1016/j.ymgme.2012.05.022
56. Mohan N., McKiernan P., Preece M.A., Green A., Buckels J., Mayer A.D., Kelly D.A. Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 1999; 158(Suppl 2): S49–54. DOI: 10.1007/pl00014321
57. Jack R.M., Scott C.R. Validation of a therapeutic range for nitisinone in patients treated for tyrosinemia type 1 based on reduction of succinylacetone excretion. JIMD Rep 2019; 46(1): 75–78. DOI: 10.1002/jmd2.12023
58. van Spronsen F.J., Bijleveld C.M., van Maldegem B.T., Wijburg F.A. Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifluoro-methylbenzoyl)- 1,3-cyclohexanedione treatment. J Pediatr Gastroenterol Nutr 2005; 40(1): 90–93. DOI: 10.1097/00005176-200501000-00017
59. de Laet C., Dionisi-Vici C., Leonard J.V., McKiernan P., Mitchell G., Monti L. et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 2013; 8: 8. DOI: 10.1186/1750-1172-8-8
60. Maiorana A., Malamisura M., Emma F., Boenzi S., Di Ciommo V.M., Dionisi-Vici C. Early effect of NTBC on renal tubular dysfunction in hereditary tyrosinemia type 1. Mol Genet Metab 2014; 113(3): 188–193. DOI: 10.1016/j.ymgme.2014.07.021
61. Masurel-Paulet A., Poggi-Bach J., Rolland M.O., Bernard O., Guffon N., Dobbelaere D. et al. NTBC treatment in tyrosinaemia type I: long-term outcome in French patients. J Inherit Metab Dis 2008; 31(1): 81–87. DOI: 10.1007/s10545-008-0793-1
Рецензия
Для цитирования:
Волынец Г.В., Никитин А.В., Скворцова Т.А. Наследственная тирозинемия 1-го типа у детей. Российский вестник перинатологии и педиатрии. 2019;64(5):69-83. https://doi.org/10.21508/1027-4065-2019-64-5-69-83
For citation:
Volynets G.V., Nikitin A.V., Skvortsova T.A. Hereditary tyrosinemia type 1 in children. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(5):69-83. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-5-69-83