Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Митохондриальная динамика и значение ее нарушений в развитии детских болезней. Часть II. Кардиологические и эндокринологические аспекты

https://doi.org/10.21508/1027-4065-2024-69-2-12-18

Аннотация

Динамика митохондриальных преобразований в клетке вызывает в последние годы все больший интерес как представителей фундаментальной науки, так и исследователей в области прикладной медицины. Растет число наблюдений, доказывающих важное регуляторное влияние митохондриальной динамики на разнообразные физиологические и патологические процессы во многих, если не во всех органных и тканевых структурах. Представляются все более значимыми перспективы изучения особенностей и регуляторов этих процессов для понимания патогенеза заболеваний, разработки их новых биомаркеров, а также технологий лечения. Цель настоящей статьи — обзор полученных в отношении митохондриальной динамики фактов, которые, с точки зрения авторов, заслуживают внимания педиатров. Объем соответствующей информации оказался слишком широк, чтобы уместиться в рамках одной статьи, что заставило разделить ее на несколько последовательных публикаций. Во второй части приведены сведения о роли нарушений митохондриальной динамики в патогенезе сердечно-сосудистых и эндокринных заболеваний у детей.

Об авторах

В. С. Сухоруков
ФГБНУ «Научный центр неврологии»; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Сухоруков Владимир Сергеевич - д.м.н., проф., зав. лабораторией нейроморфологии Института мозга ; проф. кафедры гистологии, эмбриологии и цитологии

117997 Москва, ул. Островитянова, д. 1



Т. И. Баранич
ФГБНУ «Научный центр неврологии»; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Баранич Татьяна Ивановна - к.м.н., ст. науч. сотр. лаборатории нейроморфологии Института мозга ; доц. кафедры гистологии, эмбриологии и цитологии

117997 Москва, ул. Островитянова, д. 1



А. В. Егорова
ФГБНУ «Научный центр неврологии»; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Егорова Анна Валериевна - к.м.н., науч. сотр. лаборатории нейроморфологии Института мозга; доц. кафедры гистологии, эмбриологии и цитологии

117997 Москва, ул. Островитянова, д. 1



Е. Н. Федорова
ФГБНУ «Научный центр неврологии»; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Федорова Евгения Николаевна - лаборант-исследователь лаборатории нейроморфологии Института мозга; ассистент кафедры гистологии, эмбриологии и цитологии

117997 Москва, ул. Островитянова, д. 1



К. А. Скворцова
ФГБНУ «Научный центр неврологии»; ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Скворцова Кристина Андреевна - лаборант лаборатории нейроморфологии Института мозга; студентка

117997 Москва, ул. Островитянова, д. 1



Д. А. Харламов
ГБУЗ «Научно-практический центр специализированной медицинской помощи детям им. В.Ф. Войно-Ясенецкого»
Россия

Харламов Дмитрий Алексеевич - к.м.н., вед. науч. сотр.

119620 Москва, ул. Авиаторов, д. 38



А. И. Крапивкин
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России; ГБУЗ «Научно-практический центр специализированной медицинской помощи детям им. В.Ф. Войно-Ясенецкого»
Россия

Крапивкин Алексей Игоревич - д.м.н., дир.;  проф. кафедры госпитальной педиатрии им. академика В.А. Таболина педиатрического факультета

117997 Москва, ул. Островитянова, д. 1

119620 Москва, ул. Авиаторов, д. 38



Список литературы

1. Сухоруков В.С., Баранич Т.И., Егорова А.В., Федорова Е.Н., Скворцова К.А., Харламов Д.А. и др. Митохондриальная динамика и значение ее нарушений в развитии детских болезней. Часть I. Физиологические и неврологические аспекты. Российский вестник перинатологии и педиатрии 2024; 1: (в печати).

2. He J., Bao Q., Yan M., Liang J., Zhu Y., Wang C. et al. The role of Hippo/yes-associated protein signalling in vascular remodelling associated with cardiovascular disease. Br J Pharmacol 2018; 175(8): 1354–1361. DOI: 10.1111/bph.13806

3. Jin J.Y., Wei X.X., Zhi X.L., Wang X.H., Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 2021; 42(5): 655–664. DOI: 10.1038/s41401–020–00518-y

4. Ding Q., Qi Y., Tsang S.Y. Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the Maturation of Cardiomyocytes. Cells 2021; 10(9): 2463. DOI: 10.3390/cells10092463

5. Kasahara A., Cipolat S., Chen Y., Dorn G.W. 2nd, Scorrano L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013; 342(6159): 734–737. DOI: 10.1126/science.1241359

6. Ishihara N., Nomura M., Jofuku A., Kato H., Suzuki S.O., Masuda K. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biol 2009; 11(8): 958–966. DOI: 10.1038/ncb1907

7. Song M., Mihara K., Chen Y., Scorrano L., Dorn G.W. 2nd. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 2015; 21(2): 273–286. DOI: 10.1016/j.cmet.2014.12.011

8. Dorn G.W. 2nd, Vega R.B., Kelly D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 2015; 29(19): 1981–1991. DOI: 10.1101/gad.269894.115

9. Chen Y., Liu Y., Dorn G.W. 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 2011; 109(12): 1327–1331. DOI: 10.1161/CIRCRESAHA.111.258723

10. Papanicolaou K.N., Kikuchi R., Ngoh G.A., Coughlan K.A., Dominguez I., Stanley W.C. et al. Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. Circulation research 2012; 111(8): 1012–1026. DOI: 10.1161/circresaha.112.274142

11. Gaussin V., Van de Putte T., Mishina Y., Hanks M.C., Zwijsen A., Huylebroeck D. et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 2002; 99(5): 2878–2883. DOI: 10.1073/pnas.042390499

12. Ishihara T., Ban-Ishihara R., Maeda M., Matsunaga Y., Ichimura A., Kyogoku S. et al. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 2015; 35(1): 211–223. DOI: 10.1128/MCB.01054–14

13. Hoque A., Sivakumaran P., Bond S.T., Ling N.X.Y., Kong A.M., Scott J.W. et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell Death Discov 2018; 4:39. DOI: 10.1038/s41420–018–0042–9

14. Сухоруков В.С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011; 288 [Sukhorukov V.S. Mitochondrial pathology outlines. Moscow: Medpractica, 2011; 288. (in Russ.)

15. Mendelsohn D.H., Schnabel K., Mamilos A., Sossalla S., Pabel S., Duerr G.D. et al. Structural Analysis of Mitochondrial Dynamics-From Cardiomyocytes to Osteoblasts: A Critical Review. Int J Mol Sci 2022; 23(9): 4571. DOI: 10.3390/ijms23094571

16. Kalkhoran S.B., Munro P., Qiao F., Ong S.B., Hall A.R., Cabrera-Fuentes H. et al. Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries (Craiova) 2017; 5(1): e71. DOI: 10.15190/d.2017.1

17. Forte M., Schirone L., Ameri P., Basso C., Catalucci D., Modica J. et al. The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol 2021; 178(10): 2060–2076. DOI: 10.1111/bph.15068

18. Dillmann W.H. Diabetic Cardiomyopathy. Circ Res 2019; 124(8): 1160–1162. DOI: 10.1161/circresaha.118.314665

19. Gollmer J., Zirlik A., Bugger H. Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes Metab J 2020; 44(1): 33–53. DOI: 10.4093/dmj.2019.0185

20. Yu T., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006; 103(8): 2653–2658. DOI: 10.1073/pnas.0511154103

21. Hu L., Ding M., Tang D., Gao E., Li C., Wang K. et al. Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics 2019; 9(13): 3687–3706. DOI: 10.7150/thno.33684

22. Tsushima K., Bugger H., Wende A.R., Soto J., Jenson G.A., Tor A.R. et al. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ Res 2018; 122(1): 58–73. DOI: 10.1161/circresaha.117.311307

23. Kolleritsch S., Kien B., Schoiswohl G., Diwoky C., Schreiber R., Heier C. et al. Low cardiac lipolysis reduces mitochondrial fission and prevents lipotoxic heart dysfunction in Perilipin 5 mutant mice. [published correction appears in Cardiovasc Res. 2019; 115(13): 1906. Cardiovasc Res 2020; 116(2): 339–352. DOI: 10.1093/cvr/cvz119

24. Byers S.L., Ficicioglu C. Infant with cardiomyopathy: When to suspect inborn errors of metabolism? World J Cardiol 2014; 6(11): 1149–1155. DOI: 10.4330/wjc.v6.i11.1149

25. Spiegel R., Saada A., Flannery P.J., Burté F., Soiferman D., Khayat M. et al. Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation. J Med Genet 2016; 53(2): 127–131. DOI: 10.1136/jmedgenet-2015–103361

26. Nagy R., Boutin T.S., Marten J., Huffman J.E., Kerr S.M., Campbell A. et al. Exploration of haplotype research consortium imputation for genome-wide association studies in 20,032 Generation Scotland participants. Genome Med 2017; 9(1): 23. DOI: 10.1186/s13073–017–0414–4

27. Cahill T. J., Leo V., Kelly M., Stockenhuber A., Kennedy N.W., Bao L. et al. Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure. [published correction appears in J Biol Chem 2016; 291(49): 25762. J Biol Chem 2015; 290(43): 25907–25919. DOI: 10.1074/jbc.M115.665695

28. Hasan P., Saotome M., Ikoma T., Iguchi K., Kawasaki H., Iwashita T. et al. Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol 2018; 121: 103–106. DOI: 10.1016/j.yjmcc.2018.07.004

29. Shirakabe A., Zhai P., Ikeda Y., Saito T., Maejima Y., Hsu C.P. et al. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. Circulation 2016; 133(13): 1249–1263. DOI: 10.1161/circulationaha.115.020502

30. Yu H., Guo Y., Mi L., Wang X., Li L., Gao W. Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 2011; 16(2): 205–211. DOI: 10.1177/1074248410385683

31. Jiang S., Teague A.M., Tryggestad J.B., Aston C.E., Lyons T., Chernausek S.D. Effects of maternal diabetes and fetal sex on human placenta mitochondrial biogenesis. Placenta 2017; 57: 26–32. DOI: 10.1016/j.placenta.2017.06.001

32. Dietrich M.O., Liu Z.W., Horvath T.L. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 2013; 155(1): 188–199. DOI: 10.1016/j.cell.2013.09.004

33. Haigh J.L., New L.E., Filippi B.M. Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism. Front Endocrinol (Lausanne) 2020; 11: 580879. DOI: 10.3389/fendo.2020.580879

34. Chiurazzi M., Di Maro M., Cozzolino M., Colantuoni A. Mitochondrial Dynamics and Microglia as New Targets in Metabolism Regulation. Int J Mol Sci 2020; 21(10): 3450.DOI: 10.3390/ijms21103450

35. Ding X., Fang T., Pang X., Pan X., Tong A., Lin Z. et al. Mitochondrial DNA abnormalities and metabolic syndrome. Front Cell Dev Biol 2023; 11: 1153174. DOI: 10.3389/fcell.2023.1153174

36. Akhtar S., Siragy H.M. Pro-renin receptor suppresses mitochondrial biogenesis and function via AMPK/SIRT-1/PGC-1α pathway in diabetic kidney. PLoS One 2019; 14(12): e0225728. DOI: 10.1371/journal.pone.0225728

37. Yan W., Zhang H., Liu P., Wang H., Liu J., Gao C. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol 2013; 108(3): 329. DOI: 10.1007/s00395–013–0329–1

38. Popov L.D. Mitochondrial biogenesis: An update. J Cell Mol Med 2020; 24(9): 4892–4899. DOI: 10.1111/jcmm.15194

39. Wang H., Yan W.J., Zhang J.L., Zhang F.Y., Gao C., Wang Y.J. et al. Adiponectin partially rescues high glucose/high fat-induced impairment of mitochondrial biogenesis and function in a PGC-1α dependent manner. Eur Rev Med Pharmacol Sci 2017; 21(3): 590–599

40. Shenouda S.M., Widlansky M.E., Chen K., Xu G., Holbrook M., Tabit C.E. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 2011; 124(4): 444–453. DOI: 10.1161/circulationaha.110.014506

41. Westermeier F., Navarro-Marquez M., López-Crisosto C., Bravo-Sagua R., Quiroga C., Bustamante M. et al. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1853(5): 1113–1118. DOI: 10.1016/j.bbamcr.2015.02.005

42. Zhan M., Usman I.M., Sun L., Kanwar Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol 2015; 26(6): 1304–1321. DOI: 10.1681/ASN.2014050457

43. Sajic M. Mitochondrial dynamics in peripheral neuropathies. Antioxid Redox Signal 2014; 21(4): 601–620. DOI: 10.1089/ars.2013.5822

44. Bhatt M.P., Lim Y.C., Kim Y.M., Ha K.S. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes 2013; 62(11): 3851–3862. DOI: 10.2337/db13–0039

45. Wang Q., Zhang M., Torres G., Wu S., Ouyang C., Xie Z. et al. Metformin Suppresses Diabetes-Accelerated Atherosclerosis via the Inhibition of Drp1-Mediated Mitochondrial Fission. Diabetes 2017; 66(1): 193–205. DOI: 10.2337/db16–0915

46. Uldry M., Yang W., St-Pierre J., Lin J., Seale P., Spiegelman B.M. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 2006; 3(5): 333–341. DOI: 10.1016/j.cmet.2006.04.002

47. Hey-Mogensen M., Clausen T.R. Targeting Mitochondrial Biogenesis and Mitochondrial Substrate Utilization to Treat Obesity and Insulin Resistance, Respectively — Two Data- Driven Hypotheses. Curr Diabetes Rev 2017; 13(4): 395–404. DOI: 10.2174/1573399812666160217122827

48. Ortega S.P., Chouchani E.T., Boudina S. Stress turns on the heat: Regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 2017; 6(1): 56–61. DOI: 10.1080/21623945.2016.1273298

49. Yan Y., Yang X., Zhao T., Zou Y., Li R., Xu Y. Salicylates promote mitochondrial biogenesis by regulating the expression of PGC-1α in murine 3T3-L1 pre-adipocytes. Biochem Biophys Res Commun 2017; 491(2): 436–441. DOI: 10.1016/j.bbrc.2017.07.074

50. Lee M.S., Kim Y. Effects of Isorhamnetin on Adipocyte Mitochondrial Biogenesis and AMPK Activation. Molecules 2018; 23(8): 1853. DOI: 10.3390/molecules23081853

51. Liu M., Zheng M., Cai D., Xie J., Jin Z., Liu H. et al. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct 2019; 10(4): 2221–2233. DOI: 10.1039/c8fo02527d

52. Karise I., Bargut T.C., Del Sol M., Aguila M.B., Mandarim-de-Lacerda C.A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed Pharmacother 2019; 111: 1156–1165. DOI: 10.1016/j.biopha.2019.01.021

53. Yi L., Shang X.J., Lv L., Wang Y., Zhang J., Quan C. et al. Cadmium-induced apoptosis of Leydig cells is mediated by excessive mitochondrial fission and inhibition of mitophagy. Cell Death Dis 2022; 13(11): 928. DOI: 10.1038/s41419–022–05364-w

54. Jones A., Thornton C. Mitochondrial dynamics in the neonatal brain — a potential target following injury? Biosci Rep 2022; 42(3): BSR20211696. DOI: 10.1042/BSR20211696

55. Corona J.C., Duchen M.R. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016; 100: 153–163. DOI: 10.1016/j.freeradbiomed.2016.06.023

56. Zhang Z., Zhang X., Meng L., Gong M., Li J., Shi W. et al. Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Front Pharmacol 2021; 12: 658362. DOI: 10.3389/fphar.2021.658362

57. Chuang Y.C., Lin T.K., Yang D.I., Yang J.L., Liou C.W., Chen S.D. Peroxisome proliferator-activated receptor-gamma dependent pathway reduces the phosphorylation of dynamin-related protein 1 and ameliorates hippocampal injury induced by global ischemia in rats. J Biomed Sci 2016; 23(1): 44. DOI: 10.1186/s12929–016–0262–3

58. Yeh J.H., Wang K.C., Kaizaki A., Lee J.W., Wei H.C., Tucci M.A. et al. Pioglitazone Ameliorates Lipopolysaccharide- Induced Behavioral Impairment, Brain Inflammation, White Matter Injury and Mitochondrial Dysfunction in Neonatal Rats. Int J Mol Sci 2021; 22(12): 6306. DOI: 10.3390/ijms22126306

59. Boris M., Kaiser C.C., Goldblatt A., Elice M.W., Edelson S.M., Adams J.B. et al. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation 2007; 4: 3. DOI: 10.1186/1742–2094–4–3

60. Zdravkovic V., Hamilton J.K., Daneman D., Cummings E.A. Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J Pediatr 2006; 149(6): 845–849. DOI: 10.1016/j.jpeds.2006.08.049

61. Oriquat G.A., Ali M.A., Mahmoud S.A., Eid R.M.H.M., Hassan R., Kamel M.A. Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl Physiol Nutr Metab 2019; 44(4): 357–364. DOI: 10.1139/apnm-2018–0354

62. Zhang X., Zhang Z., Zhao Y., Jiang N., Qiu J., Yang Y. et al. Alogliptin, a Dipeptidyl Peptidase-4 Inhibitor, Alleviates Atrial Remodeling and Improves Mitochondrial Function and Biogenesis in Diabetic Rabbits. Am Heart Assoc 2017; 6(5): e005945. DOI: 10.1161/JAHA.117.005945


Рецензия

Для цитирования:


Сухоруков В.С., Баранич Т.И., Егорова А.В., Федорова Е.Н., Скворцова К.А., Харламов Д.А., Крапивкин А.И. Митохондриальная динамика и значение ее нарушений в развитии детских болезней. Часть II. Кардиологические и эндокринологические аспекты. Российский вестник перинатологии и педиатрии. 2024;69(2):12-18. https://doi.org/10.21508/1027-4065-2024-69-2-12-18

For citation:


Sukhorukov V.S., Baranich T.I., Egorova A.V., Fedorova E.N., Skvortsova K.A., Kharlamov D.A., Krapivkin A.I. Mitochondrial dynamics and the significance of its disturbances in the development of childhood diseases. Part II. Cardiological and endocrinological aspects. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2024;69(2):12-18. (In Russ.) https://doi.org/10.21508/1027-4065-2024-69-2-12-18

Просмотров: 453


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)