Preview

Российский вестник перинатологии и педиатрии

Расширенный поиск

Преэклампсия матери и программирование сердечно-сосудистого здоровья ребенка

https://doi.org/10.21508/1027-4065-2019-64-4-19-25

Аннотация

Представлен обзор литературы, посвященной проблеме программирования формирования структуры и функции сердечнососудистой системы у детей от матерей с преэклампсией. Такие дети имеют высокий риск развития сердечно-сосудистых заболеваний в последующей жизни. Показано, что в основе развития преэклампсии лежат дисфункция эндотелия, нарушения регуляции иммунных и воспалительных факторов при беременности. Экспериментальные исследования идентифицируют эти факторы как ключевые эпигенетические факторы программирования состояния сердечно-сосудистой системы потомства. Современная концепция внутриутробного программирования, описывающая этот феномен, сфокусирована на трех основных областях исследований: экспериментальных моделях, имитирующих внутриутробную среду при  преэклампсии; изучении того, как у человека формируется патологический фенотип под влиянием указанных факторов; эпигенетических исследованиях воздействия преэклампсии на функцию сердечно-сосудистой системы. Обсуждаются перспективы профилактики эпигенетического программирования.

Об авторах

О. П. Ковтун
ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России
Россия

д.м.н., проф., чл.- корр. РАН, ректор,

Екатеринбург



П. Б. Цывьян
ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России; ФГБУ «Уральский научно-исследовательский институт охраны материнства и младенчества» Минздрава России
Россия

д.м.н., проф., зав. кафедрой нормальной физиологии;

вед. науч. сотр.,

620028 Екатеринбург, ул. Репина, д. 3



Список литературы

1. Сидорова И.С., Филиппов О.С., Никитина Н.А., Гусева Е.В. Причины материнской смертности от преэклампсии и эклампсии в 2013 году. Акушерство и гинекология 2015; 4: 11–17.

2. Steegers E.A.P., von Dadelszen P., Duvekot J. J. Pijnenborg R. Pre-eclampsia. Lancet 2010; 376(5): 631–644. DOI: 10.1016/s0140-6736(10)60279-6

3. McDonald S.D., Malinowski A., Zhou Q., Yusuf S., Devereaux P.J. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J 2008;156(5): 918–930. D0I: 10.1016/j.ahj.2008.06.042

4. Kajantie E., Eriksson J.G., Osmond C., Thornburg K., Barker D.J.P. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki Birth Cohort Study. Stroke 2009; 40(9): 1176–1180. DOI: 10.1161/strokeaha.108.538025

5. Lawlor D.A., Macdonald-Wallis C., Fraser A., Nelson S.M. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J 2012; 33(2): 335–345. DOI: 10.1093/eurheartj/ehr300

6. Jayet P.Y., Rimoldi S.F., Stuber T., Salmon C.S. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 2010; 122(3): 488–494. DOI: 10.1161/circulationaha.110.941203

7. Ковтун О.П., Цывьян П.Б. Перинатальное программирование артериальной гипертензии у ребенка. Вестник РАМН 2013; 6: 34–38.

8. Gluckman P.D., Hanson M.A. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 2004; 56: 311–317. DOI: 10.1203/01.pdr.0000135998.08025.fb

9. Barker D.J.P., Osmond C., Golding J. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989; 298(6673): 564–567. DOI: 10.1136/bmj.298.6673.564

10. Kanasaki K., Kalluri R. The biology of preeclampsia. Kidney Int 2009; 76(6): 831–837. DOI: 10.1038/ki.2009.284

11. Redman C.W.G., Sargent I.L. Placental stress and pre-eclampsia: a revised view. Placenta 2009; 30(1): 38–42. DOI: 10.1016/j.placenta.2008.11.021

12. Furuya M., Kurasawa K., Nagahama K., Kawachi K. Disrupted balance of angiogenic and antiangiogenic signalings in preeclampsia. J Pregnancy 2011; 123: 717–722. DOI: 10.1155/2011/123717

13. Sunderland N., Hennessy A., Makris A. Animal models of preeclampsia. Am J Reprod Immunol 2011; 65(3): 533–541. DOI: 10.1111/j.1600-0897.2010.00929.x

14. McCarthy F.P., Kingdom J.C., Kenny L.C., Walsh S.K. Animal models of preeclampsia: uses and limitations. Placenta 2011; 32: 413–419. DOI: 10.1016/j.placenta.2011.03.010

15. Vuguin P.M. Animal models for small for gestational age and fetal programming of adult disease. Horm Res 2007; 68(2): 113–123. DOI: 10.1159/000100545

16. Golden J.G., Hughes H.C., Lang C.M. Experimental toxemia in the pregnant guinea pig (Cavia porcellus). Lab Anim Sci 1980; 30: 174–179. DOI: 10.1038/laban.787

17. Clark K.E., Durnwald M., Austin J.E. A model for studying chronic reduction in uterine blood flow in pregnant sheep. Am J Physiol 1982; 242: H297–H301. DOI: 10.1152/ajpheart.1982.242.2.h297

18. Cavanagh D., Rao P.S., Tsai C.C., O’Connor T.C. Experimental toxemia in the pregnant primate. Am J Obstet Gynecol 1977; 128: 75–85. DOI: 10.1016/0002-9378(77)90296-4

19. Abitbol M.M., Pirani C.L., Ober W.B. Production of experimental toxemia in the pregnant dog. Obstet Gynecol 1976; 48: 537–548. DOI: 10.1016/0002-9378(76)90169-1

20. Alexander B.T., Kassab S.E., Miller M.T., Abram S.R., Reckelhoff J.F. Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension 2001; 37(10): 1191–1195. DOI: 10.1161/01.hyp.37.4.1191

21. Gilbert J.S., Babcock S.A., Granger J.P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble Fms-like tyrosine kinase-1 expression. Hypertension 2007; 50: 1142–1147. DOI: 10.1161/hypertensionaha.107.096594

22. Mazzuca M.Q., Wlodek M.E., Dragomir N.M., Parkington H.C., Tare M. Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 2010; 588: 1997–2010. DOI: 10.1113/jphysiol.2010.187849

23. Wang Z., Huang Z., Lu G., Lin L., Ferrari M. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring. Am J Physiol Heart Circ Physiol 2009; 296: H1321–H1328. DOI: 10.1152/ajpheart.00440.2008

24. Lai Z., Kalkunte S., Sharma S. A critical role of interleukin-10 in modulating hypoxia-induced preeclampsia-like disease in mice. Hypertension 2011; 57: 505–514. DOI: 10.1161/hypertensionaha.110.163329

25. Maynard S.E., Min J.Y., Merchan J., Lim K.H. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658. DOI: 10.1172/jci200317189

26. Lu F., Longo M., Tamayo E., Maner W. The effect of overexpression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am J Obstet Gynecol 2007; 196: 396. e1–396.e7. DOI: 10.1016/j.ajog.2006.12.024

27. Lu F., Bytautiene E., Tamayo E., Gamble P., Anderson G.D., Hankins G.D. et al. Gender-specific effect of overexpression ofsFlt-1 in pregnant mice on fetal programming of blood pressure in the offspring later in life. Am J Obstet Gynecol 2007; 197(4): 418.e1–418.e5. DOI: 10.1016/j.ajog.2007.06.064

28. Van Vliet B.N., Chafe L.L. Maternal endothelial nitric oxide synthase genotype influences offspring blood pressure and activity in mice. Hypertension 2007; 49: 556–562. DOI: 10.1161/01.hyp.0000257876.87284.3c

29. Mitchell G.F., Conlin P.R., Dunlap M.E., Lacourc Y. Aortic diameter, wall stiffness, and wave reflection in systolic hypertension. Hypertension 2008; 51: 105–111. DOI: 10.1161/hypertensionaha.107.099721

30. Briscoe T.A., Rehn A.E., Dieni S., Duncan J.R., Wlodek M.E. Cardiovascular and renal disease in the adolescent guinea pig after chronic placental insufficiency. Am J Obstet Gynecol 2004; 191(6): 847–855. DOI: 10.1016/j.ajog.2004.01.050

31. Herrera E.A., Camm E.J., Cross C.M., Mullender J.L., Wooding F.B., Giussani D.A. Morphological and functional alterations in the aorta of the chronically hypoxic fetal rat. J Vasc Res 2011; 49: 50–58. DOI: 10.1159/000330666

32. Tong W., Xue Q., Li Y., Zhang L. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. Am J Physiol Heart Circ Physiol 2011: 301: H2113–H2122. DOI: 10.1152/ajpheart.00356.2011

33. Bae S., Xiao Y., Li G., Casiano C. A., Zhang L. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol 2003; 285: H983–H990. DOI: 10.1152/ajpheart.00005.2003

34. Payne J.A., Alexander B.T., Khalil R.A. Decreased endothelium-dependent NO-cGMP vascular relaxation and hypertension in growth-restricted rats on a high-salt diet. Hypertension 2004; 43: 420–427. DOI: 10.1161/01. hyp.0000111832.47667.13

35. Lazdam M., de la Horra A., Pitcher A., Mannie Z., Diesch J., Trevitt C. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 2010; 56(2): 159–165. DOI: 10.1161/hypertensionaha.110.150235

36. Morton J.S., Rueda-Clausen C.F., Davidge S.T. Mechanisms of endothelium-dependent vasodilation in male and female, young and aged offspring born growth restricted. Am J Physiol Regul Integr Comp Physiol 2010; 298: R930–R938. DOI: 10.1152/ajpregu.00641.2009

37. Tsao P.N., Wei S.C., Su Y.N., Chou H.C., Chen C.Y. Excess soluble fms-like tyrosine kinase 1 and low platelet counts in premature neonates of preeclamptic mothers. Pediatrics 2005; 116(3): 468–472. DOI: 10.1542/peds.2004-2240

38. Staff A.C., Braekke K., Harsem N.K., Lyberg T., Holthe M.R. Circulating concentrations of sFlt1 (soluble fms-like tyrosine kinase 1) in fetal and maternal serum during pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 2005; 12: 33–39. DOI: 10.1016/j.ejogrb.2004.11.015

39. Davis E.F., Lazdam M., Lewandowski A.J., Worton S.A., Kelly B.A., Kenworthy Y. et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 2012; 196(6): e1552–1561. DOI: 10.1542/peds.2011-3093

40. Medica I., Kastrin A., Peterlin B. Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2007; 131: 115–126. DOI: 10.1016/j.ejogrb.2006.10.005

41. Hart E., Charkoudian N. Sympathetic neural mechanisms in human blood pressure regulation. Curr Hypertens Rep 2011; 13: 237–243. DOI: 10.1007/s11906-011-0191-1

42. Salinas C.E., Villena M., Blanco C.E., Giussani D.A. Adrenocortical suppression in highland chick embryos is restored during incubation at sea level. High Alt Med Biol 2011; 12: 79–87. DOI: 10.1089/ham.2010.1040

43. Myers D.A., Hyatt K., Mlynarczyk M., Bird I.M., Ducsay C.A. Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1707– R1714. DOI: 10.1152/ajpregu.00343.2005

44. Alexander B.T., Hendon A.E., Ferril G., Dwyer T.M. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 2005; 45: 754–758. DOI: 10.1161/01.hyp.0000153319.20340.2a

45. Moritz K.M., Mazzuca M.Q., Siebel A.L., Mibus A., Arena D. Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol 2009; 587(10): 2635–2646. DOI: 10.1113/ jphysiol.2009.170407

46. Friedmann E., Hauben E., Maylandt K., Schleeger S., Vreugde S., Lichtenthaler S.F. et al. SPPL2a and SPPL2b promote intramembrane proteolysis of TNFαin activated dendritic cells to trigger IL-12 production. Nat Cell Biol 2006; 8: 843–848. DOI: 10.1038/ncb1440

47. LaMarca B.B.D., Bennett W.A., Alexander B.T., Cockrell K., Granger J.P. Hypertension produced by reductions in uterine perfusion in the pregnant rat. Hypertension 2005; 46: 1022– 1025. DOI: 10.1161/01.hyp.0000175476.26719.36

48. Laskowska M., Laskowska K., Leszczynska-Gorzelak B., Oleszczuk J. Comparative analysis of the maternal and umbilical interleukin-8 levels in normal pregnancies and in pregnancies complicated by preeclampsia with intrauterine normal growth and intrauterine growth retardation. J Matern Fetal Neonat Med 2007; 20: 527–532. DOI: 10.1080/14767050701412719

49. Kvehaugen A.S., Dechend R., Ramstad H.B., Troisi R., Fugelseth D., Staff A. C. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension 2011; 58: 63–69. DOI: 10.1161/hypertensionaha.111.172387

50. Julian C.G., Pedersen B.S., Salmon C.S., Yang I.Y., Gonzales M., Vargas E. et al. Unique DNA methylation patterns in offspring of hypertensive pregnancy. Clin Trans Sci 2015; 8: 740–745. DOI: 10.1111/cts.12346

51. Blair J.D., Yuen R.K., Lim B.K., McFadden D.E., vonDadelszen P., Robinson W.P. Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset pre-eclampsia. Mol Hum Reprod 2013; 19(10): 697–708. DOI: 10.1093/molehr/gat044

52. Ching T., Ha J., Song M.A., Tiirikainen M., Molnar J., Berry M.J. Genomescale hypomethylation in the cord blood DNAs associated with early onset preeclampsia. Clin Epigenet 2015; 7(1): 21–27. DOI: 10.1186/s13148-015-0052-x

53. Sena J.A., Wang L., Hu C.J. BRG1 and BRM chromatin-remodeling complexes regulate the hypoxia response by acting as coactivators for a subset of hypoxia-inducible transcription factor target genes. Mol Cell Biol 2013; 33(19): 3849–3863. DOI: 10.1128/mcb.00731-13

54. Herzog E.M., Eggink A.J., Willemsen S.P., SteegersTheunissen R.P.M. Early- and late-onset preeclampsia and the tissue specific epigenome of the placenta and newborn. Placenta 2017; 58: 122–132. DOI: 10.1016/j.placenta.2017.08.070


Рецензия

Для цитирования:


Ковтун О.П., Цывьян П.Б. Преэклампсия матери и программирование сердечно-сосудистого здоровья ребенка. Российский вестник перинатологии и педиатрии. 2019;64(4):19-25. https://doi.org/10.21508/1027-4065-2019-64-4-19-25

For citation:


Kovtun O.P., Tsyvian P.B. Pre-eclampsia in a mother and programming of the child’s cardiovascular health. Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics). 2019;64(4):19-25. (In Russ.) https://doi.org/10.21508/1027-4065-2019-64-4-19-25

Просмотров: 1080


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1027-4065 (Print)
ISSN 2500-2228 (Online)